
               
P1: ATI/PNI-KMI P2: SAG

January 12, 1998 18:17 APJ/Journal of Computational Physics JCP5867

JOURNAL OF COMPUTATIONAL PHYSICS139,137–165 (1998)
ARTICLE NO. CP975867

Efficient Evaluation of Vector Translation
Coefficients in Multiparticle
Light-Scattering Theories

Yu-lin Xu

Department of Astronomy, P.O. Box 112055, University of Florida, Gainesville, Florida 32611-2055
E-mail: shu@astro.ufl.edu

Received May 15, 1997; revised October 1, 1997

Vector addition theorems are a necessary ingredient in the analytical solution of
electromagnetic multiparticle-scattering problems. These theorems include a large
number of vector addition coefficients. There exist three basic types of analytical
expressions for vector translation coefficients: Stein’s (Quart. Appl. Math. 19, 15
(1961)), Cruzan’s (Quart. Appl. Math. 20, 33 (1962)), and Xu’s (J. Comput. Phys.
127, 285 (1996)). Stein’s formulation relates vector translation coefficients with
scalar translation coefficients. Cruzan’s formulas use the Wigner 3jm symbol. Xu’s
expressions are based on the Gaunt coefficient. Since the scalar translation coefficient
can also be expressed in terms of the Gaunt coefficient, the key to the expeditious
and reliable calculation of vector translation coefficients is the fast and accurate
evaluation of the Wigner 3jm symbol or the Gaunt coefficient. We present highly ef-
ficient recursive approaches to accurately evaluating Wigner 3jm symbols and Gaunt
coefficients. Armed with these recursive approaches, we discuss several schemes for
the calculation of the vector translation coefficients, using the three general types of
formulation, respectively. Our systematic test calculations show that the three types
of formulas produce generally the same numerical results except that the algorithm
of Stein’s type is less accurate in some particular cases. These extensive test calcula-
tions also show that the scheme using the formulation based on the Gaunt coefficient
is the most efficient in practical computations.c© 1998 Academic Press

Key Words:electromagnetic multiparticle-scattering; vector spherical harmonics;
vector addition theorems; vector translation coefficients; Wigner 3jm symbols; Gaunt
coefficients; computational efficiency; computational method.

I. INTRODUCTION

Vector translational addition theorems are a useful analytic tool to translate a multi-
pole expansion of an electromagnetic field from one to an other coordinate system. These
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theorems have many practical applications in the solution to various scientific problems
involving multiple sources or multiple particles, including electromagnetic multiparticle-
scattering problems. Use of these theorems introduces a large number of vector translation
coefficients [1, 2]. In multisphere light-scattering calculations, the vector translation coeffi-
cients appear in a linear system as the coefficients of unknown partial interactive scattering
coefficients of each individual spheres [3–7]. These addition coefficients are also required
in the determination of the scattering cross section and asymmetry parameter of an arbitrary
multiparticle configuration [8]. Starting with the work by Stein [1] and Cruzan [2] in early
1960s, considerable efforts have been devoted to the formulation and evaluation of these
vector addition coefficients.

Vector translation coefficients have basically three forms of analytical expressions in
terms of the scalar translation coefficient [9], the Wigner 3jm symbol [10], and the Gaunt
coefficient [11], respectively. Stein [1] showed that vector translation coefficients can be
evaluated from pertinent scalar translation coefficients. Kim [12] and Mackowski [13] de-
rived their own expressions of Stein’s type. Cruzan [2] formulated the translation coefficients
using the Wigner 3jm symbol. Xu [14] provided a set of expressions in terms of the Gaunt
coefficient. As shown in the present paper, all these three types of formulas are equivalent in
view of numerical results. Making use of the formulas of Stein’s type, one needs to compute
relevant scalar translation coefficients, which, in turn, calls for the evaluation of the related
Gaunt coefficients. Implementation of Xu’s formulas requires also the computation of the
Gaunt coefficient. The use of Cruzan’s formulas demands the evaluation of the Wigner 3jm
symbol. An adequate numerical technique for the evaluation of the Wigner 3jm symbol or
the Gaunt coefficient is thus of key importance to obtaining reliable numerical values of
vector translation coefficients in practical scattering calculations.

The Wigner 3jm symbol, one of the angular momentum coupling coefficients extensively
used in quantum mechanics, is defined by [15, 16](

j1 j2 j3
m1 m2 m3

)
= (−1) j1+ j2+m3

×
[
( j1−m1)!( j1+m1)!( j2−m2)!( j2+m2)!( j3−m3)!( j3+m3)!

( j1+ j2− j3)!( j1− j2+ j3)!(− j1+ j2+ j3)!( j1+ j2+ j3+ 1)!

]1/2

×
kmax∑

k=kmin

(−1)k
(

j1+ j2− j3
k

)(
j1− j2+ j3
j1−m1− k

)(− j1+ j2+ j3
j2+m2− k

)
, (1)

where( j
k ) represents the binomial coefficient, and

kmin = max(0, j2− j3−m1, j1− j3+m2), (2)

kmax= min( j1+ j2− j3, j1−m1, j2+m2). (3)

The Wigner 3jm symbol (or called the Wigner 3jm coefficient) vanishes unlessm1 +
m2 + m3 = 0 and j3 satisfies the triangle conditionj3min ≤ j3 ≤ j1 + j2, where j3min =
max(| j1 − j2|, |m1 + m2|). For the evaluation of Wigner 3jm symbols, there are several
published computer programs, which provide numerical results either in exact numerical
expressions or in decimal approximations. The former includes the computer codes written
by Lai and Chiu [16] and by Fang and Shriner [17], which are designed to evaluate the
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Wigner 3jm symbol individually and to express the numerical result in an integer prime-
factor and rational-fraction form. These programs are excellent whenever an exact numerical
expression is needed and the involvedj -value is not large. But this kind of programs is not
suitable for the general use in multiparticle-scattering calculations because its purpose is
not for an extensive use in a simultaneous calculation of a large number of the coefficients,
especially when largej -values are involved. Fang and Shriner’s program overflows at large
j -values and Lai and Chiu’s program switches to decimal approximations whenj > 30.
Nearly all existing computer codes, including Lai and Chiu’s, Fang and Shriner’s, and those
in decimal approximations, are based on the direct use of Eq. (1). This causes an accuracy
problem when the value ofj is not small. In practical calculations, no matter what numerical
representation is used, this direct use of the definition equation must evaluate the sum over
k. This summation occurred in Eq. (1) takes all values ofk for which the factorial arguments
are nonnegative. It implies delicate cancellations between successive terms that alternate
in sign. For largej -values, the individual terms in the summation become much larger
than their sum and the accuracy of their sum will be very poor. Also, direct evaluation
of factorials and binomial coefficients in each term of an individualk will easily cause
an overflow. The only exception from this method of direct calculation seems to be the
work by Schulten and Gordon [18, 19]. These two authors derived a very useful recurrence
relation and provided a recursion scheme for the evaluation of the 3jm symbols [19]. Their
recursive approach proceeds with an arbitrary starting value in both forward and backward
recursions. Matching an intermediate 3jm symbol in the forward and backward recursion
series leaves all values of the group of 3jm symbols off by a constant factor. This factor is
then determined by the unitary property of Wigner 3jm symbols and the phase convention.
Schulten and Gordon’s work is an important example showing that recursive evaluation
of Wigner 3jm symbols is practically feasible. Recursive approach is much more efficient
and more accurate than the method of direct calculation. Based on the recurrence relation
formulated by Schulten and Gordon, we devise a recursion scheme that allows one to fast
and accurately evaluate Wigner 3jm symbols.

The Gaunt coefficient is closely related to the Wigner 3jm symbol and defined by [11]

a(m, n, µ, ν, p) = (2p+ 1)

2

(p−m− µ)!
(p+m+ µ)!

∫ 1

−1
Pm

n (x)P
µ
ν (x)P

m+µ
p (x) dx, (4)

wherem, n, µ, ν, p are integers,|m| ≤ n, |µ| ≤ ν, Pm
n represents the associated Legendre

function of the first kind. Cruzan’s formula [2] relating the Gaunt coefficient and the 3jm
symbol is

a(m, n, µ, ν, p) = (−1)m+µ(2p+ 1)

[
(n+m)!(ν + µ)!(p−m− µ)!
(n−m)!(ν − µ)!(p+m+ µ)!

]1/2

×
(

n ν p
0 0 0

)(
n ν p
m µ −m− µ

)
. (5)

Gaunt coefficients can be either directly calculated using Eq. (5) with an appropriate algo-
rithm to compute Wigner 3jm symbols or recursively evaluated by their recurrence relations.
Bruning and Lo [3] published a three-term recurrence relation for some particular Gaunt
coefficients withµ = −m. Bruning [20] and Fuller [21] tried to derive general recurrence
relations. Recently, Xu [22] devised an algorithm for the fast evaluation of Gaunt coeffi-
cients by solving a lower triangular linear system. The linearization algorithm has been
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further developed to a general recursion scheme [23]. The present paper discusses this re-
cursion scheme and systematically compares its numerical results with those from Cruzan’s
3jm formula Eq. (5). Our extensive numerical tests show that the numerical results from
both methods are in excellent agreement. But the recursive approach is more time-effective,
especially for the computation of a large number of Gaunt coefficients in multiparticle
light-scattering calculations.

With Wigner 3jm symbols and Gaunt coefficients evaluated with satisfactory accuracy,
vector translation coefficients can be computed using either one of the existing analytical
expressions. Our systematic numerical tests indicate that the three basic types of formu-
las provide in general the same numerical results. Only in some particular cases, Stein’s
algorithm, which is based on the scalar translation coefficient, is less accurate. In [13],
Mackowski provided an indirect recursion scheme for the calculation of scalar transla-
tion coefficients, which has been also discussed in detail in [14]. Numerical results from
Mackowski’s formulas, which are of Stein’s type, and his indirect recursive approach to
evaluating scalar translation coefficients are also in good agreement with those from the
schemes using Stein’s, Cruzan’s, and Xu’s formulas. However, there is literature containing
a conclusion that one of Cruzan’s formulas is incorrect. In addition to the experimental
validation by Xu and Gustafson [24], we demonstrate here by our test calculations that, al-
though one of the two equations for the two classes of vector translation coefficients needs
some clarification, Cruzan’s overall formulation is right, indeed.

II. RECURSIVE EVALUATION OF WIGNER 3jm SYMBOLS

Wigner 3jm symbols can be evaluated, in principle, directly from Eq. (1). It seems that,
to date, the main stream of existing computer codes has been following this method of
direct calculation. This is, however, probably not a good approach in practical calculations
unless the involvedj -values are small. In this section, we present a useful recursion scheme
capable of computing accurately Wigner 3jm symbols from low to very highj -values. This
recursion scheme is stable, accurate, and highly efficient.

A. Exact Numerical Expression

As Eq. (1) shows explicitly, numerical values of Wigner 3jm symbols can be expressed
exactly in terms of prime factors since the square of each 3jm symbol is rational. Any
rational number can be specified by two integers and every positive integer has a unique
factorization to primes. In practical programming the rational-fraction and prime-factor
method can be implemented by an array containing the exponents of the prime factors and
the phase. Lai and Chiu [16] express the numerical value of a 3jm symbol by a sign and two
arrays. One array stores the prime factors and the other stores the corresponding powers of
each prime number. Fang and Shriner [17] use the form of(a/b)

√
c/d, wherea, b, c, and

d are integers. Readers are referred to Refs. [16, 17, 25] for the detailed description of the
exact calculation of the 3jm symbols. In practical calculations, the largestj -value, for which
an exact numerical expression for the 3jm symbol can be obtained, is limited by the length
of computer word in use. When the exact numerical value of some quantity in manipulation
exceeds the number of digits that a computer word can represent, the truncation error
introduces a certain degree of approximation. Problems also occur when performing the
summation overk. The overflow problem hampers Fang and Shriner’s program in going to
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large j -values. Lai and Chiu’s program switches to decimal approximations whenj > 30.
Lai and Chiu’s program is written in quadruple-precision and demands significantly more
computing time than lower precision arithmetic. Although Lai and Chiu’s program works
well for fairly large j -values, similar to other existing programs, it also loses accuracy
when computing the sum overk. Because Lai and Chiu’s and Fang and Shriner’s programs
are designed to calculate the 3jm symbol separately and do not make use of relationships
between the values of contiguous coefficients, they are too time-consuming for the extensive
use in multiparticle-scattering calculations where numerous sets of the coupling coefficients
need to be determined at the same time. Nevertheless, these programs can be used in mutual
tests for our new recursion scheme.

B. Recursive Evaluation

There exists an algorithm for the evaluation of Wigner 3jm symbols based on the exact
solution of recurrence relations. Schulton and Gordon [18, 19] provided the three-term
recurrence relation,

j3C( j3+ 1)

(
j1 j2 j3+ 1

m1 m2 m3

)
+ D( j3)

(
j1 j2 j3

m1 m2 m3

)
+ ( j3+ 1)C( j3)

(
j1 j2 j3− 1

m1 m2 m3

)
= 0, (6)

where

C( j3) = {[( j3)
2− ( j1− j2)

2][( j1+ j2+ 1)2− ( j3)
2][( j3)

2− (m3)
2]}1/2,

(7)
D( j3) = −(2 j3+ 1)[ j1( j1+ 1)m3− j2( j2+ 1)m3− j3( j3+ 1)(m2−m1)].

This recurrence relation follows directly from the eigenvalue problems that define the
coupling coefficients. It is also solved in a way similar to the integration of bound state
Schrödinger equations. The linear three-term recurrence relation Eq. (6) reduces to two
terms at the boundariesj3min = | j1− j2| or |m1+m2| and j3max = j1+ j2,(

j1 j2 j1+ j2− 1
m1 m2 m3

)
= D( j1+ j2)

( j1+ j2+ 1)C( j1+ j2)

(
j1 j2 j1+ j2

m1 m2 m3

)
,

(8)(
j1 j2 j3min + 1

m1 m2 m3

)
= D

(
j3min

)(
j3min

)
C
(

j3min + 1
) ( j1 j2 j3min

m1 m2 m3

)
.

Hence, the recurrence process can start with a single starting value in either forward or
backward recursion. For an integer combination of( j1, j2,m1,m2), the total number of
3jm symbols is determined by

Nt = j1+ j2+ 1−max(| j1− j2|, |m1+m2|). (9)

1. Calculation of starting values.For backward recursion (i.e., the recursion withj3
decreasing), the starting value is( j1

m1

j2
m2

j1+ j2
−m1−m2

). For this particular 3jm symbol, since

kmin = kmax= 0 (10)
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by Eqs. (2) and (3), Eq. (1) becomes(
j1 j2 j1+ j2

m1 m2 −m1−m2

)
= (−1) j1+ j2+m1+m2

×
[

(2 j1)!(2 j2)!( j1+ j2−m1−m2)!( j1+ j2+m1+m2)!

(2 j1+ 2 j2+ 1)!( j1−m1)!( j1+m1)!( j2−m2)!( j2+m2)!

]1/2

. (11)

For forward recursion (withj3 increasing), the starting value is( j1
m1

j2
m2

j3min−m1−m2
). There are

in total four possibilities for the value ofj3min:

j3min = | j1− j2|, (12)

or

j3min = |m1+m2|. (13)

Similar to Eq. (11), the analytical expressions for( j1
m1

j2
m2

j3min−m1−m2
) corresponding to these

four cases are, respectively,(
j1 j2 j1− j2

m1 m2 −m1−m2

)
= (−1) j1+m1

×
[

( j1−m1)!( j1+m1)!(2 j1− 2 j2)!(2 j2)!

( j2−m2)!( j2+m2)!( j1− j2−m1−m2)!( j1− j2+m1+m2)!(2 j1+ 1)!

]1/2

, (14)

(
j1 j2 j2− j1

m1 m2 −m1−m2

)
= (−1) j2+m2

×
[

( j2−m2)!( j2+m2)!(2 j2− 2 j1)!(2 j1)!

( j1−m1)!( j1+m1)!( j2− j1−m1−m2)!( j2− j1+m1+m2)!(2 j2+ 1)!

]1/2

, (15)

(
j1 j2 m1 +m2

m1 m2 −m1 −m2

)
= (−1) j2+m2

×
[

( j1 +m1)!( j2 +m2)!( j1 + j2 −m1 −m2)!(2m1 + 2m2)!

( j1 −m1)!( j2 −m2)!( j1 − j2 +m1 +m2)!( j2 − j1 +m1 +m2)!( j1 + j2 +m1 +m2 + 1)!

]1/2

, (16)

(
j1 j2 −m1 −m2

m1 m2 −m1 −m2

)
= (−1) j1+m1

×
[

( j1 −m1)!( j2 −m2)!( j1 + j2 +m1 +m2)!(−2m1 − 2m2)!

( j1 +m1)!( j2 +m2)!( j1 − j2 −m1 −m2)!( j2 − j1 −m1 −m2)!( j1 + j2 −m1 −m2 + 1)!

]1/2

. (17)

All Eqs. (11) and (14–17) imply a single value ofk. In other words, accurate starting values
can be obtained directly using Eq. (1) because these particular cases do not have the problem
of losing accuracy in the summation overk.
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2. Stability and efficiency of the forward and backward recursions.We use the unitary
property of the Wigner 3jm symbol

j1+ j2∑
j3= j3min

(2 j3+ 1)

(
j1 j2 j3

m1 m2 m3

)2

= 1 (18)

to systematically check the accuracy of the numerical results from both forward and back-
ward recursion procedures, the method of direct calculation, and Lai and Chiu’s program.
The residual

R=
∣∣∣∣∣1−

j1+ j2∑
j3= j3min

(2 j3+ 1)

(
j1 j2 j3

m1 m2 m3

)2
∣∣∣∣∣ (19)

is the direct measure of the accuracy. In this accuracy test, all our calculations are in quadru-
ple precision, the same as in Lai and Chiu’s program. Table 1 shows the accuracy-test results
for the four schemes: backward recursion (BR), forward recursion (FR), the method of di-
rect calculation (DC), and Lai and Chiu’s program (Lai90). From Table 1 we see that the
method of direct calculation using Eq. (1) and Lai and Chiu’s program start to lose accuracy
at aroundj ≈ 20 and that neither backward nor forward recursion is satisfactorily accu-
rate, although the backward recursion seems to be more stable. As pointed out by Schulton
and Gordon [19], both backward and forward recursion procedures are stable only in the

TABLE 1

Computational Accuracy of Four Methods for the Calculation of Wigner 3jm Symbols

Using Quadruple-Precision Arithmetic

Largest residualRmax
c

jmax
a Nb BRd FRe DC f Lai90g

10 128,843 0.338994E-32 0.377964E-32 0.114352E-32 0.722224E-33
20 3,267,285 0.670027E-32 0.772177E-32 0.394575E-31 0.883360E-33
30 22,903,327 0.116300E-31 0.171656E-31 0.403632E-29 0.363135E-29
40 92,684,969 0.126091E-31 0.213693E-22 0.318329E-27 0.283796E-27
50 276,020,211 0.165525E-31 0.171587E-10 0.276811E-25 —
60 675,677,053 0.190997E-31 — — —
70 1,443,383,495 0.716262E-28 — — —
80 2,789,427,537 0.331044E-22 — — —

a The largest value ofj1 and j2 reached in the test calculations,jmax = j1max = j2max. The same applies to Tables
2, 4, and 7.

b The total number of all possible groups of( j1, j2,m1,m2) when j1 and j2 reach jmax. The same applies to
Tables 2, 4, and 7.

c The residualR, defined by Eq. (19), is the direct measure of the numerical accuracy of calculated Wigner 3jm
symbols. The same applies to Table 4.

d Backward recursion, i.e., the recursion in the direction withj3 decreasing.
e Forward recursion, i.e., the recursion in the direction withj3 increasing.
f The method of direct calculation using Eq. (1). The same applies to Tables 2, 4, and 7.
g Lai and Chiu’s computer code [16].
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direction of increasing coupling coefficients. For largej -values, the 3jm symbols drop ex-
ponentially at both end regions of the recursion domain (so-called nonclassical domains)
towards the boundaries. These two nonclassical domains are separated by an intermediate
region (so-called classical domain), where the values of the 3jm symbols oscillate rapidly.
Schulton and Gordon’s recursion scheme [19] proceeds simultaneously forward and back-
ward from the two nonclassical domains towards an intermediate coefficient that lies in the
classical domain of larger coupling coefficients. In their program, starting values for both
recursion directions are arbitrary. Their scheme requires, therefore, finding an appropriate
intermediate value ofj3 at which both recursion series meet and using the appropriate
numerical factors to rescale recursion series in the determination of the actual numerical
values of 3jm symbols.

Table 2 lists the CPU times required by the four different schemes. Table 2 shows that the
method of direct calculation and, especially, Lai and Chiu’s program are much more CPU
time-demanding than the recursion procedures. This is not surprising because the method
of direct calculation and Lai and Chiu’s program calculate the 3jm symbol individually.

3. A practically useful recursion scheme.As indicated in Table 1, our test calculations
show that the backward recursion is more accurate than the forward recursion, although
no one alone works satisfactorily well. For the backward recursion, problems occur at the
end region ofj3min, where the forward recursion is stable. We propose a recursion scheme
that is: (i) using the analytical expressions Eqs. (11) and (14–17) to directly calculate two
starting values atj3max and j3min, (ii) using the two-term relations Eqs. (8) to calculate the
next coefficient at both ends, (iii) using Schulton and Gordon’s recurrence relation Eq. (6) to
generate the backward recursion series, and (iv) calculating in the forward direction for only
the 3jm symbols that monotonically increase and replacing those in the backward series.
Unlike Schulton and Gordon’s program, this scheme does not use arbitrary starting values
and does not require the determination of an intermediate value ofj3 as well as rescaling
factors.

4. Calculation of factorials. We need to address here the problem of the calculation of
factorials. Although using Eqs. (11) and (14–17) to determine starting values does not have

TABLE 2

CPU Time Required by the Same Four Schemes as in Table 1 in Quadruple-Precision

Calculations of Wigner 3jm Symbolsa

CPU (s) on DEC ALphaStation 600 5/333

jmax N BR FR DC Lai90

10 128,843 4.91 4.75 11.34 120.91
20 3,267,285 127.20 122.68 585.54 8,340.21
30 22,903,327 906.01 874.30 6,929.53 104,549.61
40 92,684,969 3,678.46 3,546.22 42,576.03 631,109.01
50 276,020,211 11,014.74 10,623.30 178,450.70 —
60 675,677,053 26,961.18 — — —
70 1,443,383,495 57,676.91 — — —
80 2,789,427,537 111,891.44 — — —

a See the footnotes of Table 1 for the meaning of headings.
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the problem of losing accuracy in the summation overk, these equations involve the cal-
culation of a quite large number of factorials. Quadruple-precision calculations can handle
very large numbers. But it is much more time-consuming than lower precision. Usually, we
use double-precision arithmetic, where 171! overflows floating point representation. This
will occur at aroundj1 = j2 = 42 in Eq. (11). To avoid the overflow problem, logarithms of
factorials can be used in decimal calculations. There is a very neat approximation derived
by Lanczos [26] specifically to the gamma function:

z! =
√

2π

(
z+ γ + 1

2

)z+1/2

e−(z+γ+1/2)Aγ (z), (20)

where

Aγ (z) = 1

2
ρ0+ ρ1

z

z+ 1
+ ρ2

z(z− 1)

(z+ 1)(z+ 2)
+ · · · (21)

with

ρk =
k∑
α=0

C2k
2αF(α),

(22)

F(α) =
√

2

π

(
α − 1

2

)
!

(
α + γ + 1

2

)−α−1/2

eα+γ+1/2,

andC2k
2αs are the coefficients of the Chebyshev polynomial. The logarithm of a factorial can

be calculated from the equation

ln(z!) = ln(2π)

2
−
(

z+ γ + 1

2

)
+
(

z+ 1

2

)
ln

(
z+ γ + 1

2

)
+ ln

(
c0+ c1

z+ 1
+ c2

z+ 2
+ · · · + cN

z+ N
+ ε
)
, (23)

whereε is the truncation error. There is a published subroutine using Lanczos’ approxima-
tion method in the book “Numerical Recipes” [27], which usesγ = 5 andN = 6 that result
in |ε| < 2× 10−10. To apply Lanczos’ approximation in double-precision calculations, we
useγ = 10 andN = 11, and consequently,|ε| < 1.4× 10−17. The corresponding values
of c’s are given in Table 3.

C. Accuracy and Timing Tests

Based on Schulton and Gordon’s recurrence relation, we have devised a recursive ap-
proach to computing Wigner 3jm symbols. In our practical programming, we use double
precision. Our systematic accuracy test indicates that this recursion scheme (REC-W) works
well from low to very high j -values, while the method of direct calculation using Eq. (1)
(DC) and the forward recursion (FR) work well only forj ≈ 10 or smaller and are unable
to provide accurate results even at quite modest values ofj such asj ≈ 20, not to mention
larger j -values. The backward recursion (BR) works reasonably well untilj = 20∼30.
Similar to Table 1, Table 4 shows the largest residualsRmax (see Eq. (19) for the definition
of R) occurred in the double-precision calculations of Wigner 3jm symbols using the four
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TABLE 3

c-Coefficients in Lanczos’ Approximation (Eq. (23)) whenγ = 10 andN = 11

c0 0.10000000000000000d1 c1 0.16427423239836267d5
c2 −0.48589401600331902d5 c3 0.55557391003815523d5
c4 −0.30964901015912058d5 c5 0.87287202992571788d4
c6 −0.11714474574532352d4 c7 0.63103078123601037d2
c8 −0.93060589791758878d0 c9 0.13919002438227877d-2
c10 −0.45006835613027859d-8 c11 0.13069587914063262d-9

different schemes: our recursion scheme (REC-W), the method of direct calculation (DC),
the forward recursion (FR), and the backward recursion (BR). As examples for practical
computations, Tables 5 and 6 provide the numerical values of all Wigner 3jm symbols
with ( j1, j2,m1,m2) = (98, 115,−69,−100) and(260, 280, 228, 268) calculated by the
recursion scheme REC-W. Table 7 is the timing-test results, which show that our recursive
approach is much more efficient, especially at largej -values. The computing time required
by our recursion scheme is only a few percentages of that of the method of direct calculation.

III. RECURSIVE EVALUATION OF GAUNT COEFFICIENTS

As defined by Eq. (4), the Gaunt coefficient can be expressed using the definite integrals
of the product of three associated Legendre functions. Alternatively, Gaunt coefficients can
be also defined by the equation [22]

Pm
n (x)P

µ
ν (x) =

qmax∑
q=0

aq Pm+µ
n+ν−2q(x), (24)

TABLE 4

Numerical Accuracy of the Wigner 3jm Symbols Computed by the Recursion Scheme Pro-

posed in the Present Paper (REC-W), the Backward (BR) and Forward (FR) Recursions, and

the Method of Direct Calculation (DC) Using Double-Precision Arithmetica

Largest residualRmax

jmax N REC-W BR FR DC

10 128,843 0.1650E-12 0.2391E-12 0.3192E-12 0.1539E-12
20 3,267,285 0.4125E-12 0.4441E-12 0.1095E-06 0.6831E-11
30 22,903,327 0.4125E-12 0.4730E-12 — 0.8050E-09
40 92,684,969 0.4784E-12 0.3717E-10 — 0.7658E-07
50 276,020,211 0.6483E-12 0.2538E-04 — 0.8140E-05
60 675,677,053 0.7675E-12 — — 0.6197E-03
70 1,443,383,495 0.9029E-12 — — —
80 2,789,427,537 0.1103E-11 — — —
90 4,992,257,179 0.1247E-11 — — —
100 8,408,080,421 0.1381E-11 — — —

a See the footnotes of Table 1 for the meaning of headings.
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TABLE 5

Wigner 3jm Symbols ( 98
−69

115
−100

j3
169) Calculated by the Recursion Scheme (REC-W) Proposed

in the Present Paper

j3 (
98
−69

115
−100

j3
169
) j3 (

98
−69

115
−100

j3
169
)

213 0.247807608975E-02 190 −0.766670865870E-02
212 0.693884894548E-02 189 0.183623427214E-02
211 0.119894874087E-01 188 0.885978296144E-02
210 0.137159251054E-01 187 0.360339675896E-02
209 0.878978201272E-02 186 −0.675539815610E-02
208 −0.134879420191E-02 185 −0.775155593324E-02
207 −0.970595957126E-02 184 0.217581459579E-02
206 −0.914594140187E-02 183 0.920466519730E-02
205 0.198440813258E-04 182 0.332904024036E-02
204 0.878311425522E-02 181 −0.741474620815E-02
203 0.793425707299E-02 180 −0.792886358693E-02
202 −0.164593319164E-02 179 0.278789882553E-02
201 −0.910034650419E-02 178 0.995072010456E-02
200 −0.569261339324E-02 177 0.338584101796E-02
199 0.451366658452E-02 176 −0.824790063946E-02
198 0.900428915783E-02 175 −0.908913611839E-02
197 0.213839293164E-02 174 0.249530288372E-02
196 −0.738662641847E-02 173 0.116922354185E-01
195 −0.727334991775E-02 172 0.649086743310E-02
194 0.238138717955E-02 171 −0.766439796219E-02
193 0.884240026286E-02 170 −0.158289171853E-01
192 0.343404012778E-02 169 −0.115821629971E-01
191 −0.662762854015E-02 R= 0.19706459E-13

whereaq is an abbreviated notation of the Gaunt coefficienta(m, n, µ, ν,n+ ν − 2q) and

qmax= min

(
n, ν,

n+ ν − |m+ µ|
2

)
. (25)

There are two ways to calculate the Gaunt coefficient. With Wigner 3jm symbols accurately
calculated using the recursion scheme developed in the last section, Gaunt coefficients can
be evaluated by Eq. (5) formulated by Cruzan. Gaunt coefficients can also be recursively
calculated in terms of their general recurrence relations [23].

A. General Recurrence Relations

Gaunt coefficients can be solved in a lower triangular linear system [22]:

aq = a0
(p+ 1/2)2q

(−n4)2q

q∑
k=0

(m− n)2k(µ− ν)2q−2k

k!(q − k)!(−n+ 1/2)k(−ν + 1/2)q−k

−
q−1∑
j=0

(−p− q + j + 1/2)q− j

(q − j )!
aj . (26)
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TABLE 6

Wigner 3jm Symbols (260
228

280
268

j3
−496) Calculated by the Recursion Scheme (REC-W) Proposed in

the Present Paper

j3 (
260
228

280
268

j3
−496

) j3 (
260
228

280
268

j3
−496

)

540 0.646538800496E-03 517 −0.547290382597E-02
539 −0.215500549372E-02 516 0.174964877782E-02
538 0.465411076035E-02 515 0.394504283491E-02
537 −0.731061039588E-02 514 −0.527216572521E-02
536 0.838427599069E-02 513 0.724931930634E-03
535 −0.626797503117E-02 512 0.468182444016E-02
534 0.111598158779E-02 511 −0.496946357969E-02
533 0.440871782946E-02 510 −0.217788430018E-03
532 −0.656221561371E-02 509 0.526678411373E-02
531 0.357812146408E-02 508 −0.473156768970E-02
530 0.224745743079E-02 507 −0.865329202847E-03
529 −0.592844996838E-02 506 0.572304021206E-02
528 0.410199707330E-02 505 −0.488192167706E-02
527 0.156337294749E-02 504 −0.859257546078E-03
526 −0.558989788105E-02 503 0.604575462241E-02
525 0.395146634823E-02 502 −0.598098779693E-02
524 0.170679604185E-02 501 0.773481764641E-03
523 −0.551972978223E-02 500 0.547061798683E-02
522 0.345323154487E-02 499 −0.866216228838E-02
521 0.230286994591E-02 498 0.777640385675E-02
520 −0.553203800308E-02 497 −0.465713579139E-02
519 0.269624934600E-02 496 0.173119327070E-02
518 0.310961234591E-02 R= 0.10780049E-12

From this linearization algorithm, we obtained an analytical expression for any individual
Gaunt coefficient,

aq = a0
2p+ 1

2

q∑
i=0

(p+ q − i + 3/2)q+i−1

(q − i )!(n4− 2i + 1)2i

×
i∑

j=0

(m− n)2 j (µ− ν)2i−2 j

j !(i − j )!(−n+ 1/2) j (−ν + 1/2)i− j
, (27)

whereq = 1, 2, . . . ,qmax, n4 = n+ ν −m− µ, and

p = n+ ν − 2q. (28)

Based on this algorithm, we have also derived the general recurrence formulas for Gaunt
coefficients [23], which are shown in the Appendix. Another and easier way to derive the
recurrence relations is to use Eqs. (5) and (6). Denote that

Wp =
(

n ν p
m µ −m− µ

)
, (29)

W0
p =

(
n ν p
0 0 0

)
, (30)
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TABLE 7

CPU Time Required by Two Schemes REC-W and DC in

Double-Precision Calculations of Wigner 3jm Symbols

CPU (s) on DEC AlphaStation
600 5/333

jmax N REC-W DC

10 128,843 0.87 5.54
20 3,267,285 14.57 197.22
30 22,903,327 83.30 1,785.18
40 92,684,969 295.84 8,868.34
50 276,020,211 808.66 31,285.43
60 675,677,053 1,861.11 88,516.61
70 1,443,383,495 3,794.23 —
80 2,789,427,537 7,065.23 —
90 4,992,257,179 12,270.59 —

100 8,408,080,421 20,159.84 —

βp = {[ p2− (n− ν)2][(n+ ν + 1)2− p2]}1/2, (31)

ξp = [(p−m− µ)(p+m+ µ)]1/2, (32)

Ap = p(p− 1)(m− µ)− (m+ µ)(n− ν)(n+ ν + 1). (33)

With the use of these notations, Eqs. (5) and (6) become, respectively,

ap = a(m, n, µ, ν, p) = (−1)m+u(2p+ 1)ξp

(p+m+ µ)!
[
(n+m)!(ν + µ)!
(n−m)!(ν − µ)!

]1/2

W0
pWp, (34)

(p+ 2)βp+1ξp+1Wp = (2p+ 3)Ap+2Wp+1− (p+ 1)βp+2ξp+2Wp+2. (35)

Equation (35) is equivalent to

C0Wp = C2Wp+2+ C4Wp+4, (36)

where

C0 = (p+ 2)(p+ 3)βp+1βp+2ξp+1ξp+2(2p+ 7)Ap+4, (37)

C2 = (2p+ 3)(2p+ 5)(2p+ 7)Ap+2Ap+3Ap+4

− (p+ 1)(p+ 3)β2
p+2ξ

2
p+2(2p+ 7)Ap+4 (38)

− (p+ 2)(p+ 4)β2
p+3ξ

2
p+3(2p+ 3)Ap+2,

C4 = −(p+ 2)(p+ 3)βp+3βp+4ξp+3ξp+4(2p+ 3)Ap+2. (39)

For the special case ofW0
p, Ap ≡ 0, ξp = p, and then

W0
p = −

βp+2

βp+1
W0

p+2. (40)
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Equations (34)–(40) result in the recurrence relation

(p+ 2)(p+ 3)(p1+ 1)(p1+ 2)
β2

p+1

(2p+ 1)(2p+ 3)
Ap+4ap

= −ap+2

[
Ap+2Ap+3Ap+4

− (p+ 1)(p+ 3)(p1+ 2)(p2+ 2)
β2

p+2

(2p+ 3)(2p+ 5)
Ap+4

− (p+ 2)(p+ 4)(p1+ 3)(p2+ 3)
β2

p+3

(2p+ 5)(2p+ 7)
Ap+2

]
− (p+ 2)(p+ 3)(p2+ 3)(p2+ 4)

β2
p+4

(2p+ 7)(2p+ 9)
Ap+2ap+4, (41)

where

p1 = p−m− µ, p2 = p+m+ µ. (42)

Now, we define thatαp = β2
p/(1− 4p2), i.e.,

αp = [ p2− (n− ν)2][ p2− (n+ ν + 1)2]/(4p2− 1). (43)

Then, we can rewrite Eq. (41) in the form

(p+ 2)(p+ 3)(p1+ 1)(p1+ 2)αp+1Ap+4ap

= [ Ap+2Ap+3Ap+4+ (p+ 1)(p+ 3)(p1+ 2)(p2+ 2)αp+2Ap+4

+ (p+ 2)(p+ 4)(p1+ 3)(p2+ 3)αp+3Ap+2]ap+2

− (p+ 2)(p+ 3)(p2+ 3)(p2+ 4)αp+4Ap+2ap+4, (44)

which is exactly the same as Eqs. (A1) with (A2) in Appendix. From this three-term relation,
a four-term recurrence relation without the factorAp+4 can be derived (see Eqs. (A5) and
(A6) in Appendix), which applies to the case ofAp+4 = 0, where the three-term recurrence
relation Eq. (44) is not applicable.

The recursion scheme for Gaunt coefficients based on their recurrence relations requires
only a single starting value for both forward and backward recursions, because all recurrence
formulas reduce to two-term relations at both ends. Necessary equations for the calculation
of starting values are also given in Appendix. Similar to the case of the recursive evalua-
tion of Wigner 3jm symbols, neither forward nor backward recursion alone is satisfactorily
accurate although, again, the backward recurrence is more stable. A practically applicable
recursion scheme for Gaunt coefficients must also combine forward and backward recur-
rence procedures, like the one for Wigner 3jm symbols. In practical programming, we first
generate the recursion series withq increasing and then calculate in the opposite direction
with q decreasing until a coefficient is reached for which the numerical values obtained by
both recursions are in satisfactory agreement.
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B. Numerical Test

We calculated all possible Gaunt coefficients up tonmax = νmax = 120 using both the
recursion scheme (REC-G) discussed above and the 3jm approach using Cruzan’s formula
Eq. (5) with Wigner 3jm symbols computed by the recursive scheme (REC-W) developed in
the last section. The numerical results from these two schemes are in excellent agreement.
Both methods generally have more than 11 digits agreeable. This means that the relative
deviation is usually less than 10−12. For illustration, the numerical values of the Gaunt
coefficients with(m, n, µ, ν) = (−15, 55,−58, 72) and(100, 112, 99, 143) obtained by
both methods are given in Table 8. Larger relative deviations occur at some particular cases.
Table 9 shows some practical examples of such cases where a smaller coefficient is inlaid in
much larger neighboring coefficients. Table 10 lists the largest relative deviations among all
Gaunt coefficients withn≤ nmax andν ≤ νmax(nmax= νmax) for different values ofn(ν)max.
These relative deviations are the indication of the best accuracy that can be achieved in
double-precision calculation of the Gaunt coefficient. If more accurate numerical values are
needed, it probably needs to go to higher precision arithmetic, yet considerable computing
time will be required.

As stated in [23], several other tests can be used to check the stability of the recursion
scheme:

(i) Whenµ = −m andν = n, the last Gaunt coefficientaqmax is explicitly given by

a(m, n,−m, n, 0) = (−1)m

2n+ 1
. (45)

(ii) From Eq. (24) it is obvious that whenµ = −m,
∑qmax

q=0 a(m, n,−m, ν,n+ ν− 2q)
= δm0, whereδm0 is the Krönecker delta symbol.

(iii) From Eq. (24) it is also obvious that whenn+m andµ+ ν are both odd,

qmax∑
q=0

aq
(−1)(n+ν−2q−m−µ)/2(n+ ν − 2q +m+ µ)!

2n+ν−2q[(n4− 2q)/2]![(n+ ν − 2q +m+ µ)/2]!
= 0, (46)

i.e.,
∑qmax

q=0 aq Pm+µ
n+ν−2q(0) = 0, and whenn+m andµ+ ν are both even,

qmax∑
q=0

aq
(−1)(n+ν−2q−m−µ)/2(n+ ν − 2q +m+ µ)!

2n+ν−2q[(n4− 2q)/2]![(n+ ν − 2q +m+ µ)/2]!

= (−1)(n+ν−m−µ)/2(n+m)!(ν + µ)!
2n+ν−m−µ[(n−m)/2]![(n+m)/2]![(ν − µ)/2]![(ν + µ)/2]!

, (47)

i.e.,
∑qmax

q=0 aq Pm+µ
n+ν−2q(0) = Pm

n (0)P
µ
ν (0).

(iv) In general, the numerical values of all Gaunt coefficients in the set of
a(m, n, µ, ν, p) for an integer group(m, n, µ, ν) must satisfy Eq. (24) for any value of
x (0≤ |x| ≤ 1). All our test calculations using above criteria are satisfactory and show that
the recursion scheme for the Gaunt coefficient is satisfactorily stable [23].
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TABLE 8

The Gaunt Coefficientsa(−15, 55,−58, 72,p) and a(100, 112, 99, 143,p) Calculated by Both

Cruzan’s 3jm Formula Eq. (5) and the Recursion Scheme (REC-G) Using Double-Precision

Arithmetic

q p a(−15, 55,−58, 72, p) p a(100, 112, 99, 143, p)

0 127 0.2646565853203E+18 255 0.9014801412620E-64
1 125 −0.9020609422680E+18 253 −0.4454291036755E-62
2 123 0.1261206946319E+19 251 0.8111679090489E-61
3 121 −0.9081541876029E+18 249 −0.4865717151971E-60
4 119 0.3328773378798E+18 247 −0.2865747624629E-59
5 117 −0.3999023716726E+17 245 0.2872507671244E-58
6 115 −0.9370424600630E+16 243 0.2910460460651E-57
7 113 0.1937954274150E+16 241 −0.1000363901943E-56
8 111 0.4151474435389E+15 239 −0.3299666103578E-55
9 109 −0.4503345686430E+14 237 −0.1346893095521E-54

10 107 −0.1873104702543E+14 235 0.2734024566471E-53
11 105 −0.6892824708879E+12 233 0.4243593635563E-52
12 103 0.4706522197096E+12 231 0.1415220328564E-52
13 101 0.8362386532752E+11 229 −0.6940324016290E-50
14 99 0.3331711456707E+09 227 −0.7931615430226E-49
15 97 −0.1793741596315E+10 225 0.6094455105485E-48
16 95 −0.2623374312346E+09 223 0.2730320093940E-46
17 93 −0.5949690414500E+07 221 0.1403572183265E-45
18 91 0.3036193424123E+07 219 −0.8069100849572E-44
19 89 0.4523897047862E+06 217 −0.1467294635946E-42
20 87 0.2132756927936E+05 215 0.2945238881000E-41
21 85 −0.1468293231304E+04 213 0.1164727483072E-39
22 83 −0.2692135114944E+03 211 −0.2533890338350E-38
23 81 −0.1397178728905E+02 209 −0.1158929585758E-36
24 79 0.9600863474247E-02 207 0.7915615134293E-35
25 77 0.2934252243338E-01 205 −0.2548737638735E-33
26 75 0.8107892805619E-03 203 0.5844941612434E-32
27 73 −0.5910928044174E-05 201 −0.1070823713196E-30
28 199 0.1654077641495E-29

C. Timing Test

Table 11 compares the computing times required by the recursive (REC-G) and the 3jm
approaches. It shows that the recursion scheme is around five times faster.

IV. CALCULATION OF VECTOR TRANSLATION COEFFICIENTS

Suppose that an electromagnetic field is represented by an infinite series in terms of
vector spherical wave functions in an originall th coordinate system. Its alternative multipole
expansion in a displacedj th coordinate system is connected with the original expansion
in the l th coordinate system by vector translational addition theorems. Introduced by the
addition theorems are a large number of vector translation coefficientsAl j

mnµν andBl j
mnµν,

wherem, n, µ, ν are integers andn ≥ 0, ν ≥ 0, |m| ≤ n, |µ| ≤ ν. Based on the techniques
developed in the last two sections, this section discusses the calculation of these vector
translation coefficients.
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TABLE 9

Numerical Examples Showing a Certain Degree of Discrepancy between the Gaunt Coef-

ficients Calculated by Cruzan’s 3jm Formulation and the Recursion Scheme (REC-G) Using

Double-Precision Arithmetica

a(m, n, µ, ν, p)

q p 3jm REC-G

m= 7 33 20 −0.200951835283E-04 −0.200951835283E-04
n = 42 34 18 −0.468041626714E-05 −0.468041626714E-05
µ = −15 35 16 0.575358703497E-12 0.575358716715E-12
ν = 44 36 14 0.550968182890E-06 0.550968182890E-06

37 12 0.256949806872E-06 0.256949806872E-06

m= 6 34 44 0.182562971139E+00 0.182562971137E+00
n = 50 35 42 0.191236492753E+00 0.191236492748E+00
µ = 8 36 40 −0.513681002248E-05 −0.513681858330E-05
ν = 62 37 38 −0.918115021080E+00 −0.918115021097E+00

38 36 −0.420617949011E+01 −0.420617949015E+01

m= 20 38 74 0.113220844079E+02 0.113220844079E+02
n = 66 39 72 0.481866384456E+02 0.481866384457E+02
µ = 36 40 70 0.629412856959E-03 0.629413919494E-03
ν = 84 41 68 −0.449898083589E+04 −0.449898083588E+04

42 66 −0.981044427713E+05 −0.981044427713E+05

m= 24 66 89 −0.998195574121E+04 −0.998195574089E+04
n = 105 67 87 −0.225862452960E+05 −0.225862452946E+05
µ = 31 68 85 0.389993630823E+01 0.389994300697E+01
ν = 116 69 83 0.529145427253E+06 0.529145427285E+06

70 81 0.550520830612E+07 0.550520830628E+07

a The highlights (bold style) indicate the discrepancies on the numerical values of the Gaunt coefficients obtained
by Cruzan’s 3jm formulation and Xu’s recursive scheme presented in this paper. Note that the highlighted Gaunt
coefficients are a few magnitude smaller than the neighboring coefficients.

TABLE 10

The Largest Relative Deviationδmax between the Numerical Values of Gaunt Coefficients

a(m, n, µ, ν, p) Calculated by Cruzan’s 3jm Formulation and Xu’s Recurrence Scheme

(REC-G) Using Double-Precision Arithmetica

n(ν)max δmax m n µ ν n(ν)max δmax m n µ ν

10 2.472E-13 −1 9 −1 9 70 1.667E-06 6 50 8 62
20 9.607E-12 −3 10 −5 16 80 1.667E-06 6 50 8 62
30 1.360E-10 −3 12 −6 23 90 1.688E-06 20 66 36 84
40 1.375E-09 4 30 6 40 100 1.688E-06 20 66 36 84
50 2.297E-08 7 42 −15 44 110 1.688E-06 20 66 36 84
60 2.297E-08 7 42 −15 44 120 1.718E-06 24 105 31 116

a The numbers in the four columns underm, n, µ, andν show the integer group of(m, n, µ, ν) at which the
largest relative deviation occurs. The same applies to Table 13.
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TABLE 11

CPU Time Required by Cruzan’s 3jm Formulation and the Recursion

Scheme (REC-G) for the Calculation of Gaunt Coefficients Using Double-

Precision Arithmetic

CPU (s) on DEC AlphaStation
600 5/333

n(ν)max Na REC-G 3jm

20 915,166 4.36 17.32
40 24,593,932 77.88 351.39
60 175,876,298 453.03 2,217.19
80 718,962,264 1,627.10 8,410.96

100 2,254,211,830 4,450.56 24,010.40

a The total number of all possible Gaunt coefficients whenn andν reachn(ν)max.

A. Formulas of Stein’s Type

Stein’s formulas relate the vector translation coefficientsAl j
mnµν and Bl j

mnµν with seven
scalar translation coefficients [1]:

Al j
mnµν = Emnµν

(
Cl j

mnµν + kdl j cosθl j

[
(n−m)Cl j

mn−1µν

n(2n− 1)
+ (n+m+ 1)Cl j

mn+1µν

(2n+ 3)(n+ 1)

]

+ kdl j

2
sinθl j

{[
Cl j

m−1n−1µν

n(2n− 1)
− Cl j

m−1n+1µν

(2n+ 3)(n+ 1)

]
exp(−iφl j )

−
[
(n−m− 1)(n−m)Cl j

m+1n−1µν

n(2n− 1)

− (n+m+ 2)(n+m+ 1)Cl j
m+1n+1µν

(2n+ 3)(n+ 1)

]
exp(iφl j )

})
, (48)

Bl j
mnµν =

ikdl j Emnµν

2n(n+ 1)

{
2mCl j

mnµν cosθl j −
[
Cl j

m−1n−1µν exp(−iφl j )

+ (n+m+ 1)(n−m)Cl j
m+1n−1µν exp(iφl j )

]
sinθl j

}
, (49)

where [6]

Emnµν = i ν−n (2ν + 1)(n+m)!(ν − µ)!
(2n+ 1)(n−m)!(ν + µ)! . (50)

In Eqs. (48) and (49),k is the wave number and(dl j , θl j , φl j ) are the spherical coordinates of
the origin of thej th coordinate system in thel th coordinate system. Mackowski’s equations
are [13]

Al j
mnµν =

Emnµν

2n(n+ 1)

[
(n−m)(n+m+ 1)Cl j

m+1nµ+1ν

+ 2µmCl j
mnµν + (ν + µ)(ν − µ+ 1)Cl j

m−1nµ−1ν

]
, (51)
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Bl j
mnµν = −

i (2n+ 1)Emnµν

2n(n+ 1)(2n− 1)

[
(n−m)(n−m− 1)Cl j

m+1n−1µ+1ν

+ 2µ(n−m)Cl j
mn−1µν − (ν + µ)(ν − µ+ 1)Cl j

m−1n−1µ−1ν

]
, (52)

or alternatively,

Bl j
mnµν =

i (2n+ 1)Emnµν

2n(n+ 1)(2n+ 3)

[
(n+m+ 1)(n+m+ 2)Cl j

m+1n+1µ+1ν

− 2µ(n+m+ 1)Cl j
mn+1µν − (ν + µ)(ν − µ+ 1)Cl j

m−1n+1µ−1ν

]
. (53)

The scalar translation coefficient is given by [9]

Cl j
−mnµν = (−1)m(2n+ 1)i n−ν

qmax∑
q=0

i paq

[
h(1)p (kdl j )

j p(kdl j )

]

× Pµ+m
p (cosθl j ) exp[i (µ+m)φl j ]

(
r ≤ dl j

r > dl j

)
, (54)

whereh(1)p represents the Hankel function of the first kind andj p is the Bessel function
of the first kind. Evaluation of the scalar translation coefficient using Eq. (54) requires
the determination of a complete set of the Gaunt coefficienta(m, n, µ, ν, p). With Gaunt
coefficients calculated using the numerical techniques developed in the last section, the
evaluation of scalar translation coefficients and, therefore, the vector translation coefficients
becomes an easy task through the use of Eqs. (48)–(49), (51)–(52), or (53). There is also
an other way to calculate the scalar translation coefficient using Mackowski’s recurrence
relations [13]:

Cl j
mnµν−1+ Cl j

mnµν+1

2ν + 1
= Cl j

m−1n−1µ−1ν

2n− 1
+ Cl j

m−1n+1µ−1ν

2n+ 3
, (55)

(ν + µ)(ν + µ+ 1)Cl j
mnµν−1+ (ν − µ)(ν − µ+ 1)Cl j

mnµν+1

2ν + 1

= (n−m)(n−m− 1)

2n− 1
Cl j

m+1n−1µ+1ν +
(n+m+ 1)(n+m+ 3)

2n+ 3
Cl j

m+1n+1µ+1ν, (56)

(ν + µ)Cl j
mnµν−1− (ν − µ+ 1)Cl j

mnµν+1

2ν + 1

= − n−m

2n− 1
Cl j

mn−1µν +
n+m+ 1

2n+ 3
Cl j

mn+1µν. (57)

The procedure of calculating the scalar translation coefficient by Eqs. (55)–(57) has been
discussed in detail in [14].
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B. Cruzan’s 3jm Formulation

Cruzan’s analytical expressions forAl j
mnµν and Bl j

mnµν can be written in the following
revised form [7, 14]:

Al j
−mnµν = (−1)m

(2ν + 1)(n−m)!(ν − µ)!
2n(n+ 1)(n+m)!(ν + µ)! exp[i (µ+m)φl j ]

×
qmax∑
q=0

i p[n(n+ 1)+ ν(ν + 1)− p(p+ 1)]aq

×
[

h(1)p (kdl j )

j p(kdl j )

]
Pµ+m

p (cosθl j )

(
r ≤ dl j

r > dl j

)
, (58)

Bl j
−mnµν = (−1)m+1 (2ν + 1)(n−m)!(ν − µ)!

2n(n+ 1)(n+m)!(ν + µ)! exp[i (µ+m)φl j ]

×
Qmax∑
q=1

i p+1{[(p+ 1)2− (n− ν)2][(n+ ν + 1)2− (p+ 1)2]}1/2

× b(m, n, µ, ν, p+ 1, p)

[
h(1)p+1(kdl j )

j p+1(kdl j )

]
Pµ+m

p+1 (cosθl j )

(
r ≤ dl j

r > dl j

)
, (59)

wherep,qmax, andaq = a(m, n, µ, ν, p) are the same as defined by Eqs. (28), (25), and
(5), respectively, and

Qmax= min[n, ν, (n+ ν + 1− |m+ µ|)/2], (60)

b(m, n, µ, ν, p+ 1, p) = (−1)µ+m(2p+ 3)

[
(n+m)!(ν + µ)!(p−m− µ+ 1)!

(n−m)!(ν − µ)!(p+m+ µ+ 1)!

]1/2

×
(

n ν p+ 1
m µ −m− µ

)(
n ν p
0 0 0

)
. (61)

Eqs. (58)–(61) are not Cruzan’s original formulas in [2]. These equations specify explicitly
the exact summation range overq (equivalently, the range ofp) and include the factor of
Emnµν defined by Eq. (50). In Eqs. (58) and (59) forAl j

mnµν and Bl j
mnµν, p has exactly the

same definition and takes the same set of numerical values. It is worth emphasizing here
that, despite these minor revisions, the set of equations given above has no difference from
Cruzan’s original work.

Evaluating vector translation coefficients by Cruzan’s 3jm formulation Eqs. (58) and (59)
needs two complete sets of Wigner 3jm symbols(

n
0
ν

0
p
0 ) and( n

m
ν

µ

p
−m−µ), the calculation of

which has been discussed in detail in Section II.

C. Xu’s Formulas

Vector translation coefficients can also be expressed in terms of the Gaunt coefficient, as
derived in [14]. The formulas given in [14] involve three sets of Gaunt coefficients. It can
be further simplified to the form that requires only a single set of Gaunt coefficients in both
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equations forAl j
mnµν andBl j

mnµν ,

Al j
−mnµν = (−1)m

(n+ 2)n−1(ν + 2)ν+1(n+ ν −m− µ)!
4n(n+ ν + 1)n+ν(n+m)!(ν + µ)! exp[i (µ+m)φl j ]

×
qmax∑
q=0

i p[n(n+ 1)+ ν(ν + 1)− p(p+ 1)]

× ãq

[
h(1)p (kdl j )

j p(kdl j )

]
Pµ+m

p (cosθl j )

(
r ≤ dl j

r > dl j

)
, (62)

Bl j
−mnµν = (−1)m

(n+ 2)n−1(ν + 2)ν+1(n+ ν −m− µ)!
4n(n+ ν + 1)n+ν(n+m)!(ν + µ)! exp[i (µ+m)φl j ]

×
Qmax∑
q=1

i p+1bq

[
h(1)p+1(kdl j )

j p+1(kdl j )

]
Pµ+m

p+1 (cosθl j )

(
r ≤ dl j

r > dl j

)
, (63)

where

bq = 2p+ 3

Ap+2
[(p+ 2)(p1+ 1)αp+1ãq − (p+ 1)(p2+ 2)αp+2ãq−1], Ap+2 /= 0, (64)

bq = 2p+ 3

(p+ 3)(p1+ 2)Ap+4

×{[ Ap+3Ap+4+ (p+ 2)(p+ 4)(p1+ 3)(p2+ 3)αp+3] ãq−1

− (p+ 2)(p+ 3)(p2+ 3)(p2+ 4)αp+4ãq−2}, Ap+2 = 0; (65)

ãq stands for the normalized Gaunt coefficient defined byãq = aq/a0, Ap, p1, p2, αp, and
Qmax have been defined by Eqs. (33), (42), (43), and (60), respectively. WhenAp+2 =
Ap+4 = 0, i.e., Ap vanishes independently of the value ofp, Bl j

−mnµν ≡ 0. This includes
the cases: (i)µ = m = 0 and (ii)µ = m andn = ν. In addition, there are other special
cases whereBl j

mnµν ≡ 0, which include (i)m= n andµ = −ν, and (ii)m= −n andµ = ν.
Also, in the following cases the expression forbq is rather simple:

(i) q = 1,

b1 = (2p+ 3)Ap+3

(p+ 3)(p1+ 2)
; (66)

(ii) q = qmax andn+ ν − 2qmax= |n− ν|, |m− µ|,

bqmax = −
(2p+ 3)Ap+1

p(p2+ 1)
ãqmax; (67)

(iii) q = qmax+ 1, n+ ν − 2qmax= |m− µ| + 1, andAp+2 /= 0,

bqmax+1 = − (2p+ 3)(p+ 1)(p2+ 2)αp+2

Ap+2
ãqmax. (68)

Both Eqs. (62) and (63) involve the same set of Gaunt coefficients. Equation (62) will
be exactly the same as Cruzan’s formula Eq. (58) if the normalized Gaunt coefficientãq
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is replaced by the normal Gaunt coefficientaq. Equation (63) is equivalent to Cruzan’s
formula Eq. (59), since it can be directly derived from Eq. (59) through the use of Eq. (6).

D. Numerical Results

We calculated all possible vector translation coefficients ofAl j
mnµν andBl j

mnµν (kdl j = 2.0
andθl j = φl j = 0.5) from nmin = νmin = 1 up tonmax = νmax = 45 using four different
schemes. All of our test calculations useh(1)p , the Hankel function, in the equations for
the vector translation coefficients. The first scheme (referred to as SX) uses Stein’s formu-
las and the recursive approach (REC-G) developed in Section III to computing the Gaunt
coefficients. The second (CX) employs Cruzan’s formulas. Wigner 3jm symbols are calcu-
lated by the recursive scheme (REC-W) developed in Section II. The third (MM) utilizes
Mackowski’s formulas, together with Mackowski’s recursion scheme for the calculation of
scalar translation coefficients. The fourth (XU) is based on Xu’s formulas and the recursive
approach (REC-G) to calculating Gaunt coefficients. In general, these four schemes pro-
duce same numerical results (but maybe with different accuracies). Table 12 provides some
sample numerical values ofAl j

mnµν andBl j
mnµν for which all four schemes obtain identical

results for all the digits shown. But the numerical results from the four approaches are not
always precisely the same. In some cases, larger relative deviation shows up. The largest

TABLE 12

Sample Numerical Values of Vector Translation CoefficientsAlj
mnµν and Blj

mnµν with (kdlj ,

θlj , φlj ) = (2, 0.5, 0.5) for Which All Four Schemes (SX, CX, MM, XU) Obtain More Than 12

Digits Exactly the Same Using Double-Precision Arithmetic

Al j
mnµν Bl j

mnµν

m n µ ν Real Imag. Real Imag.

8 10 −9 12 .3663964990E+35−.2762412192E+35 −.8370892023E+32−.1110285257E+32
0 10 0 10 .2969682019E+00−.1928601440E+18 .0000000000E+00 .0000000000E+00
−2 11 3 9 .7726121583E+12 .1034255820E+13 .1222239141E+11−.9130398908E+10
−12 13 10 15 .3290937356E+01 .1456483748E-01−.1763167849E-03 .3983892680E-01
−15 16 17 18 .3793897303E-08−.1261972860E-07 −.3042702016E-11 −.9147343290E-12
−5 20 5 20 .4040625669E+34−.1195269260E+34 .0000000000E+00 .0000000000E+00
10 18 15 22 −.6206840651E+36−.8308775621E+36 −.3610252125E+35 .2696938836E+35
10 30 −10 30 .1807705110+110 .2788115866+110 .0000000000E+00 .0000000000E+00
18 33 20 38 .3343492687E+92 .5207181338E+92 .1759309957E+91−.1129639932E+91
−35 36 11 12 −.1901528547E-15 .1197320691E-15−.1618572254E-18 −.2570540515E-18

36 36 −38 38 .4146334728+191−.4931584782+191 .0000000000E+00 .0000000000E+00
−35 40 35 40 −.6514262216E-05 .1374854333E-04 .0000000000E+00 .0000000000E+00

32 35 −43 45 .2762232925+212−.1368895313+213 .8373862584+209 .1689724460+209
38 42 −39 45 −.2298689786+235 .2371029493+235 .1277697908+232 .1238711556+232
−42 42 45 45 .3488835702E-28−.1826524477E-28 .0000000000E+00 .0000000000E+00
−43 45 41 42 .5178100899E-22 .1186503822E-21 .3274958627E-25−.1429246656E-25

48 50 −30 49 .3393827523+267−.1226717423+268 −.5718637033+265−.1582113973+265
−72 72 1 3 .6946365327E-42−.1782022552E-41 .1833377882E-43 .7146549596E-44

42 52 9 81 .3656934399+271 .3705813223+271−.4499925012+269−.4440572037+269
18 100 −5 45 .4118769973+293 .7460688240+293 .5914795871+291−.3265339985+291
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TABLE 13

The Largest Relative Deviationδmax of the Numerical Values of Vector Translation Coeffi-

cientsAlj
mnµν and Blj

mnµν with (kdlj , θlj ,φlj ) = (2,0.5,0.5) Obtained by Two Schemes CX and XU

Using Double-Precision Arithmetic

n(ν)max δmax m n µ ν n(ν)max δmax m n µ ν

5 2.283E-13 0 3 1 5 30 1.331E-10 −9 20 −21 30
10 2.412E-12 −3 6 4 8 35 1.331E-10 −9 20 −21 30
15 2.412E-12 −3 6 4 8 40 1.331E-10 −9 20 −21 30
20 5.135E-12 −1 18 −1 18 45 1.331E-10 −9 20 −21 30
25 5.686E-11 −21 22 −14 22

relative deviations of the numerical values obtained by CX and XU schemes are shown
in Table 13 for different values ofn(ν)max. The values of(m, n, µ, ν), where the largest
relative deviations occur, are also given. The test results tell us that for allAl j

mnµν andBl j
mnµν

we calculated, CX and XU schemes are satisfactorily accurate. The results also tell us that
the algorithm of Stein’s type is less accurate in some circumstances, although the numerical
results given by all four schemes are usually in good agreement. Some examples are shown
in Table 14.

TABLE 14

Numerical Examples of Vector Translation CoefficientsAlj
mnµν and Blj

mnµν Showing

the Formulation of Stein’s Type Is Less Accurate

Amnµν Bmnµν

kd = 2.0
θ = φ = 0.5 rad Real Imag. Real Imag.

m= −2 SX .1415553297E-01 .2385575934E+13 −.3282035237E+12 .1505192773E-02
n = 6 CX .1377011649E-01 .2385575934E+13−.3282035237E+12 .1587043209E-02
µ = −2 MM .1377011649E-01 .2385575934E+13−.3282035237E+12 .1587043209E-02
ν = 10 XU .1377011649E-01 .2385575934E+13−.3282035237E+12 .1587043209E-02

m= −15 SX .4484065575E-01 −.2653706899E+36 −.5072175010E+35 .6893509830E+19
n = 16 CX .2074318970E-01 −.2653706899E+36 −.5072175010E+35 .9852438545E-02
µ = −15 MM .2074318970E-01 −.2653706899E+36 −.5072175010E+35 .9852438545E-02
ν = 20 XU .2074318970E-01 −.2653706899E+36 −.5072175010E+35 .9852438545E-02

m= −20 SX .1171318929+100−.4993981811+115 −.2073152255+114 .3718472789E+98
n = 35 CX .1851837652E-05 −.4993981811+115 −.2073152255+114 .4193366215E-07
µ = −20 MM .1851837652E-05 −.4993981811+115 −.2073152255+114 .4193366215E-07
ν = 45 XU .1851837652E-05 −.4993981811+115 −.2073152255+114 .4193366215E-07

m= 41 SX .5274527123+243 .6806046183+243−.1036557371+246 .8033077975+245
n = 45 CX .2276246420+247 .2937180509+247−.8692874643+243 .6736775193+243
µ = −42 MM −.5984438460+241−.7722088366+241 .7496750010+238−.5809806487+238
ν = 45 XU .2276246420+247 .2937180509+247−.8692874643+243 .6736775193+243

m= 45 SX −.3850764003+250 .2984252330+250 .8048935394+247 .10386035512+248
n = 57 CX −.4293609827+274 .3327447520+274−.4939385256+271 −.6373592055+271
µ = −38 MM −.2482905385+243 .1924193790+243 .1512629781+246 .1951839076+246
ν = 42 XU −.4293609827+274 .3327447520+274−.4939385256+271 −.6373592055+271
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TABLE 15

CPU Time Required by SX, CX, MM, XU Schemes in Double-Precision

Calculations of Vector Translation CoefficientsAmnµν and Bmnµν

CPU (s) on DEC AlphaStation 600 5/333

n(ν)max Na SX MM CX XU

10 14,400 9.46 4.11 3.30 1.85
15 65,025 57.34 30.30 19.48 11.43
20 193,600 217.13 131.57 72.85 44.43
25 455,625 632.71 422.81 208.52 131.78
30 921,600 1,551.08 1,119.16 503.19 327.12
35 1,677,025 3,354.16 2,559.29 1,073.56 715.46
40 2,822,400 6,603.60 5,290.66 2,083.63 1,421.09
45 4,473,225 12,101.05 10,059.45 3,770.67 2,621.65

a The total number of vector translation coefficients with(kdl j , θl j , φl j ) specified when
n andν reachn(ν)max.

It is noticed that the values ofAl j
mnµν and Bl j

mnµν dramatically increase withn and ν
increasing. When the values ofn andν are larger than 45, the values of certainAl j

mnµν

or Bl j
mnµν overflow double-precision float point representation. For the calculation of the

vector translation coefficients withn andν larger than 45, higher precision arithmetic may
be needed although it will demand significantly more computing time.

E. Timing Test

Table 15 shows the timing-test results. Among the four schemes to calculate vector
translation coefficients, SX, CX, MM, and XU, the schemes using the formulas of Stein’s
type (SX and MM) are slower than the others. The 3jm-approach (CX) and the approach
(XU) using the Gaunt coefficient is comparable, but the latter is a bit more efficient.

V. EXAMPLES FOR PRACTICAL APPLICATION IN MULTISPHERE

LIGHT-SCATTERING CALCULATIONS

We have implemented the algorithms described in this paper, together with our multi-
sphere light-scattering formulation, in a working computer code. Comparison of the theoret-
ical results from our multisphere-scattering calculations with experimental data for various
aggregates of spheres are successful [7, 14, 24]. For illustration, Figs. 1 and 2 show two
practical examples. In 1983, Wang and Gustafson [28] published the microwave-scattering
measurement results of phase functions and the degree of polarization for 12 sets of
dumbbells and linear chains, each consisting of 2, 3, or 5 identical spheres in various
intersphere separations. In addition to the measurements for some principal fixed orienta-
tions, their data include the measurements of phase function at random-orientation average
by taking the arithmetic mean of 35 orientations uniformly distributed over an octant of
space. Figure 1 refers to a bisphere system (target ID#542000 in Ref. [28]). The two iden-
tical spheres in #542000 with a complex refractive index≈1.63−0.01i are in contact. The
size parameter, i.e., the circumference to wavelength ratio, of each sphere is 4.346. The
two spheres in the bisphere system (target ID#542002 in Ref. [28]) shown in Fig. 2 are the
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FIG. 1. Angular distribution of polarization components of scattered intensity by randomly oriented two
contacting identical spheres of refractive index 1.63− i 0.01 and size parameter 4.346 (ID#542000 in Ref. [28]).i11

andi22 correspond to the scattered-field components, perpendicular and parallel to the scattering plane, respectively.
The laboratory microwave scattering data are measured by Wang and Gustafson [28].

same as in #542000. The difference between the bisphere systems #542000 and #542002
is only that the two spheres in the latter are not in contact, which have a center-to-center
separations with ks= 9.94. The microwave-scattering measurements shown in Figs. 1 and
2 are random-orientation average of the phase functionsi11 andi22 of the targets #542000
and #542002, respectively.i11 and i22 are the scattered-field components, perpendicular
and parallel to the scattering plane, respectively. Figures 1 and 2 show that our theoretical
calculations are in good agreement with experimental data.

VI. CLOSING REMARKS

We have shown that all Stein’s, Cruzan’s, Mackowski’s, and Xu’s formulas produce
generally the same numerical results for vector translation coefficients. But the numerical
accuracies of the four different schemes are not always competitive in some cases, especially
for the calculation of high-degree coefficients. The two schemes based on the Wigner 3jm
symbol and the Gaunt coefficient are satisfactorily accurate and more efficient than the other
two.

FIG. 2. Same as in Fig. 1, but for the randomly oriented sphere system #542002 [28] of two separated
identical spheres.
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Our thorough numerical test concludes that, from the point of view of numerical results,
Cruzan’s formulas are equivalent to the formulas of others, including Stein’s and Xu’s. This
clears up the long-existing ambiguity in the analytical representation of vector translation
coefficients and rules out the criticism on Cruzan’s equation.

The recursive approach presented in this paper to calculating Wigner 3jm symbols is
implemented in decimal approximations. But in principle, Schulten and Gordon’s recursion
relation can also apply to the exact calculation of the Wigner coefficients, which may
be more efficient than the existing computer codes. Also, with a slight modification, this
recursive approach can also be applied to the calculation of Clebsch–Gordan coefficients.

APPENDIX: RECURRENCE RELATIONS OF GAUNT COEFFICIENTS

Gaunt coefficients,aq=a(m, n, µ, ν,n + ν − 2q), whereq is an integer andq =
0, 1, . . . ,qmax with qmax= min[n, ν, (n+ ν − |m+ µ|)/2], have the following three-term
recurrence relation [23],

c0aq = c1aq−1+ c2aq−2, (A1)

where

c0 = (p+ 2)(p+ 3)(p1+ 1)(p1+ 2)Ap+4αp+1,

c1 = Ap+2Ap+3Ap+4+ (p+ 1)(p+ 3)(p1+ 2)(p2+ 2)Ap+4αp+2

+ (p+ 2)(p+ 4)(p1+ 3)(p2+ 3)Ap+2αp+3, (A2)

c2 = −(p+ 2)(p+ 3)(p2+ 3)(p2+ 4)Ap+2αp+4,

with p, Ap, p1, p2, andαp defined by Eqs. (28), (33), (42), and (43), respectively. When
µ = m andν = n, Ap vanishes independently ofp so that the three-term relation Eq. (A1)
reduces to two-terms:

(p+ 2)(p1+ 1)αp+1aq = (p+ 1)(p2+ 2)αp+2aq−1. (A3)

Especially, whenµ = m= 0, the above two-term relation further reduces to

αp+1aq = αp+2aq−1. (A4)

WhenAp+4 = 0 but Ap+6 /= 0, the four-term recurrence formula,

c0aq = c1aq−1+ c2aq−2+ c3aq−3, (A5)

can be used, where

c0 = (p+ 2)(p+ 3)(p+ 5)(p1+ 1)(p1+ 2)(p1+ 4)Ap+6αp+1,

c1 = (p+ 5)(p1+ 4)Ap+6
[
Ap+2Ap+3+ (p+ 1)(p+ 3)(p1+ 2)(p2+ 2)αp+2

]
,

(A6)
c2 = (p+ 2)(p2+ 3)Ap+2

[
Ap+5Ap+6+ (p+ 4)(p+ 6)(p1+ 5)(p2+ 5)αp+5

]
,

c3 = −(p+ 2)(p+ 4)(p+ 5)(p2+ 3)(p2+ 5)(p2+ 6)Ap+2αp+6.
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For both backward and forward recursions, the implementation of either the three-term or
the four-term recurrence relation, (A1) or (A5), requires only one single starting value. In
the backward recursion, i.e., the recurrence direction ofp decreasing (q increasing), for the
second Gaunt coefficienta1 the three-term relation (A1) reduces to two terms:c0a1 = c1a0.
It is similar for forward recursion. Also, the four-term recurrence relation (A5) reduces to
two terms at boundaries fora1 or aqmax−1 and to three terms for the third coefficienta2 or
aqmax−2. This is just because all Gaunt coefficients out of range (i.e.,q < 0 orq > qmax) are a
null set. The first Gaunt coefficient in the backward recurrence direction withpmax= n+ ν
is given by [20–22]

a0 = a(m, n, µ, ν,n+ ν) = (n+ 1)n(ν + 1)ν
(n+ ν + 1)n+ν

(n+ ν −m− µ)!
(n−m)!(ν − µ)! . (A7)

In the forward recurrence direction withp increasing, the starting value atpmin = n+ ν −
2qmax can be computed by one of the following equations:

(i) pmin = n− ν,

aqmax =
(−1)µ(ν + 1)ν(n+m)!(2pmin+ 1)!

(n+ 1)n+1(ν − µ)!(n− ν)!(pmin+m+ µ)! ; (A8)

(ii) pmin = ν − n,

aqmax =
(−1)m(n+ 1)n(ν + µ)!(2pmin+ 1)!

(ν + 1)ν+1(n−m)!(ν − n)!(pmin+m+ µ)! ; (A9)

(iii) pmin = m+ µ,

aqmax = (−1)n+m−qmax(2pmin+ 1)(qmax+ 1)qmax

× (n+ ν − qmax)!(n+m)!(ν + µ)!
(n− qmax)!(ν − qmax)!(n−m)!(ν − µ)!(n+ ν + pmin+ 1)!

; (A10)

(iv) pmin = −m− µ,

aqmax = (−1)ν+µ−qmax(2pmin+ 1)(qmax+ 1)qmax

× (n+ ν − qmax)!(pmin−m− µ)!
(n− qmax)!(ν − qmax)!(n+ ν + pmin+ 1)!

; (A11)

(v) pmin = m+ µ+ 1,

aqmax =
(−1)n+m−qmax Apmin(2pmin+ 1)(qmax+ 1)qmax

(pmin− 1)(n+ ν + pmin+ 1)!

× (n+ ν − qmax)!(n+m)!(ν + µ)!
(n− qmax)!(ν − qmax)!(n−m)!(ν − µ)! . (A12)
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In this case, whenApmin = 0,aqmax = 0, the next coefficient must be provided, which is

aqmax−1 = (−1)m+n−qmax Apmin+2(2pmin+ 3)(2pmin+ 5)(qmax+ 1)qmax+1

pmin(n+ ν + pmin+ 3)(n+ ν + pmin)!

× (n− qmax)(ν − qmax)(2qmax+ 1)

(pmin+m+ µ+ 1)(pmin+m+ µ+ 2)(2qmax− 1)

× (n+ ν − qmax)!(n+m)!(ν + µ)!
(n− qmax+ 1)!(ν − qmax+ 1)!(n−m)!(ν − µ)! , (A13)

whereApmin+2 is always nonzero whenApmin = 0.
(vi) pmin = −m− µ+ 1,

aqmax =
(−1)ν+µ−qmax Apmin(2pmin+ 1)(qmax+ 1)qmax

(pmin− 1)(n+ ν + pmin+ 1)!

× (n+ ν − qmax)!(pmin−m− µ)!
(n− qmax)!(ν − qmax)!

. (A14)

WhenApmin = 0,

aqmax−1 = (−1)ν+µ−qmax Apmin+2(2pmin+ 3)(2pmin+ 5)(qmax+ 1)qmax+1

6pmin(n+ ν + pmin+ 3)(n+ ν + pmin)!

× (n− qmax)(ν − qmax)(n+ ν − qmax)!(pmin−m− µ)!
(2qmax− 1)(n− qmax+ 1)!(ν − qmax+ 1)!

. (A15)
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