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Vector addition theorems are a necessary ingredient in the analytical solution of
electromagnetic multiparticle-scattering problems. These theorems include a large
number of vector addition coefficients. There exist three basic types of analytical
expressions for vector translation coefficients: Stei@sdrt. Appl. Math 19, 15
(1961)), Cruzan'sQuart. Appl. Math 20, 33 (1962)), and Xu'sJ. Comput. Phys
127, 285 (1996)). Stein’s formulation relates vector translation coefficients with
scalar translation coefficients. Cruzan’s formulas use the Wigner 3jm symbol. Xu'’s
expressions are based on the Gaunt coefficient. Since the scalar translation coefficient
can also be expressed in terms of the Gaunt coefficient, the key to the expeditious
and reliable calculation of vector translation coefficients is the fast and accurate
evaluation of the Wigner 3jm symbol or the Gaunt coefficient. We present highly ef-
ficient recursive approaches to accurately evaluating Wigner 3jm symbols and Gaunt
coefficients. Armed with these recursive approaches, we discuss several schemes for
the calculation of the vector translation coefficients, using the three general types of
formulation, respectively. Our systematic test calculations show that the three types
of formulas produce generally the same numerical results except that the algorithm
of Stein’s type is less accurate in some particular cases. These extensive test calcula-
tions also show that the scheme using the formulation based on the Gaunt coefficient
is the most efficient in practical computationse 1998 Academic Press

Key Wordselectromagnetic multiparticle-scattering; vector spherical harmonics;
vector addition theorems; vector translation coefficients; Wigner 3jm symbols; Gaunt
coefficients; computational efficiency; computational method.

I. INTRODUCTION

Vector translational addition theorems are a useful analytic tool to translate a mul
pole expansion of an electromagnetic field from one to an other coordinate system. The
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theorems have many practical applications in the solution to various scientific probler
involving multiple sources or multiple particles, including electromagnetic multiparticle:
scattering problems. Use of these theorems introduces a large number of vector transla
coefficients [1, 2]. In multisphere light-scattering calculations, the vector translation coeff
cients appear in a linear system as the coefficients of unknown partial interactive scatter
coefficients of each individual spheres [3—7]. These addition coefficients are also requil
in the determination of the scattering cross section and asymmetry parameter of an arbitt
multiparticle configuration [8]. Starting with the work by Stein [1] and Cruzan [2] in early
1960s, considerable efforts have been devoted to the formulation and evaluation of th
vector addition coefficients.

Vector translation coefficients have basically three forms of analytical expressions
terms of the scalar translation coefficient [9], the Wigner 3jm symbol [10], and the Gaul
coefficient [11], respectively. Stein [1] showed that vector translation coefficients can |
evaluated from pertinent scalar translation coefficients. Kim [12] and Mackowski [13] de
rived their own expressions of Stein’s type. Cruzan [2] formulated the translation coefficier
using the Wigner 3jm symbol. Xu [14] provided a set of expressions in terms of the Gau
coefficient. As shown in the present paper, all these three types of formulas are equivaler
view of numerical results. Making use of the formulas of Stein’s type, one needs to compt
relevant scalar translation coefficients, which, in turn, calls for the evaluation of the relat:
Gaunt coefficients. Implementation of Xu’s formulas requires also the computation of tt
Gaunt coefficient. The use of Cruzan’s formulas demands the evaluation of the Wigner 3
symbol. An adequate numerical technique for the evaluation of the Wigner 3jm symbol
the Gaunt coefficient is thus of key importance to obtaining reliable numerical values
vector translation coefficients in practical scattering calculations.

The Wigner 3jm symbol, one of the angular momentum coupling coefficients extensive
used in quantum mechanics, is defined by [15, 16]

( 1 )2 ja) — (—1ir+iz+ma

mp my; ms

{ (ir — M) (1 + M) (G2 — M) (2 + m)! (jz — Ma)! (j3 + My)! T/Z
(it jz—iDGr—Jo+ DN =j1+ j2+ i1+ jo + jz + D!

1)K 11+Jz—13)<!1—12+13) <—_J1+J2+13>, 1
ng;m( ) ( k ji—m—k/\ j2+m—k )

where(lj() represents the binomial coefficient, and

Kmin = max(0, jo — js— My, j1 — jz+my), 2

Kmax = Min(jy + j2 — j3, j1 — My, jo +my). 3

The Wigner 3jm symbol (or called the Wigner 3jm coefficient) vanishes umess-
my + mg = 0 and j3 satisfies the triangle conditiopy,, < js < j1 + j2, Wherejs , =
max(|j1 — jo|, Im1 + my|). For the evaluation of Wigner 3jm symbols, there are several
published computer programs, which provide numerical results either in exact numeric
expressions or in decimal approximations. The former includes the computer codes writ

by Lai and Chiu [16] and by Fang and Shriner [17], which are designed to evaluate tl
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Wigner 3jm symbol individually and to express the numerical result in an integer prime
factor and rational-fraction form. These programs are excellent whenever an exact numer
expression is needed and the involjedalue is not large. But this kind of programs is not
suitable for the general use in multiparticle-scattering calculations because its purpos
not for an extensive use in a simultaneous calculation of a large number of the coefficier
especially when largg-values are involved. Fang and Shriner’s program overflows at largs
j-values and Lai and Chiu’s program switches to decimal approximations yke3D.
Nearly all existing computer codes, including Lai and Chiu’s, Fang and Shriner’s, and tho
in decimal approximations, are based on the direct use of Eq. (1). This causes an accul
problem when the value gfis not small. In practical calculations, no matter what numerical
representation is used, this direct use of the definition equation must evaluate the sum c
k. This summation occurred in Eq. (1) takes all valudsfoir which the factorial arguments
are nonnegative. It implies delicate cancellations between successive terms that alter
in sign. For largej-values, the individual terms in the summation become much large
than their sum and the accuracy of their sum will be very poor. Also, direct evaluatio
of factorials and binomial coefficients in each term of an individualill easily cause
an overflow. The only exception from this method of direct calculation seems to be tt
work by Schulten and Gordon [18, 19]. These two authors derived a very useful recurren
relation and provided a recursion scheme for the evaluation of the 3jm symbols [19]. The
recursive approach proceeds with an arbitrary starting value in both forward and backwe
recursions. Matching an intermediate 3jm symbol in the forward and backward recursi
series leaves all values of the group of 3jm symbols off by a constant factor. This factor
then determined by the unitary property of Wigner 3jm symbols and the phase conventic
Schulten and Gordon’s work is an important example showing that recursive evaluati
of Wigner 3jm symbols is practically feasible. Recursive approach is much more efficie
and more accurate than the method of direct calculation. Based on the recurrence rela
formulated by Schulten and Gordon, we devise a recursion scheme that allows one to
and accurately evaluate Wigner 3jm symbols.

The Gaunt coefficient is closely related to the Wigner 3jm symbol and defined by [11]

Qp+b(p—m—uﬂ/1
2 (p+m+ w)!

a(m,n, u,v, p) = PrOOPIOPITE0 X, (4)

-1

wherem, n, ., v, p are integersim| < n, |u| < v, P" represents the associated Legendre
function of the first kind. Cruzan’s formula [2] relating the Gaunt coefficient and the 3jn
symbol is

(n+m>!<v+m!<p—m—u)!r/2
(M —m!v — WP+ m+ )

n v p n v p
X(o 0 0>(m " —m—u)‘ ®)
Gaunt coefficients can be either directly calculated using Eq. (5) with an appropriate alg
rithm to compute Wigner 3jm symbols or recursively evaluated by their recurrence relatior
Bruning and Lo [3] published a three-term recurrence relation for some particular Gau
coefficients withu = —m. Bruning [20] and Fuller [21] tried to derive general recurrence

relations. Recently, Xu [22] devised an algorithm for the fast evaluation of Gaunt coeff
cients by solving a lower triangular linear system. The linearization algorithm has bee

am,n, u, v, p) = (=)™ 2p+1) [
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further developed to a general recursion scheme [23]. The present paper discusses thi
cursion scheme and systematically compares its numerical results with those from Cruze
3jm formula Eq. (5). Our extensive numerical tests show that the numerical results fro
both methods are in excellent agreement. But the recursive approach is more time-effect
especially for the computation of a large number of Gaunt coefficients in multiparticl
light-scattering calculations.

With Wigner 3jm symbols and Gaunt coefficients evaluated with satisfactory accurac
vector translation coefficients can be computed using either one of the existing analytit
expressions. Our systematic numerical tests indicate that the three basic types of fort
las provide in general the same numerical results. Only in some particular cases, Ste
algorithm, which is based on the scalar translation coefficient, is less accurate. In [1
Mackowski provided an indirect recursion scheme for the calculation of scalar transl
tion coefficients, which has been also discussed in detail in [14]. Numerical results fro
Mackowski’s formulas, which are of Stein’s type, and his indirect recursive approach
evaluating scalar translation coefficients are also in good agreement with those from-
schemes using Stein’s, Cruzan’s, and Xu’'s formulas. However, there is literature containi
a conclusion that one of Cruzan’s formulas is incorrect. In addition to the experiment
validation by Xu and Gustafson [24], we demonstrate here by our test calculations that,
though one of the two equations for the two classes of vector translation coefficients net
some clarification, Cruzan’s overall formulation is right, indeed.

Il. RECURSIVE EVALUATION OF WIGNER 3jm SYMBOLS

Wigner 3jm symbols can be evaluated, in principle, directly from Eq. (1). It seems tha
to date, the main stream of existing computer codes has been following this method
direct calculation. This is, however, probably not a good approach in practical calculatio
unless the involvedl-values are small. In this section, we present a useful recursion scher
capable of computing accurately Wigner 3jm symbols from low to very fighlues. This
recursion scheme is stable, accurate, and highly efficient.

A. Exact Numerical Expression

As Eq. (1) shows explicitly, numerical values of Wigner 3jm symbols can be expresse
exactly in terms of prime factors since the square of each 3jm symbol is rational. Ar
rational number can be specified by two integers and every positive integer has a uni
factorization to primes. In practical programming the rational-fraction and prime-factc
method can be implemented by an array containing the exponents of the prime factors
the phase. Lai and Chiu [16] express the numerical value of a 3jm symbol by a sign and t
arrays. One array stores the prime factors and the other stores the corresponding powe
each prime number. Fang and Shriner [17] use the forfadf)./c/d, wherea, b, c, and
d are integers. Readers are referred to Refs. [16, 17, 25] for the detailed description of
exact calculation of the 3jm symbols. In practical calculations, the lajgesiue, for which
an exact numerical expression for the 3jm symbol can be obtained, is limited by the lenc
of computer word in use. When the exact numerical value of some quantity in manipulati
exceeds the number of digits that a computer word can represent, the truncation el
introduces a certain degree of approximation. Problems also occur when performing |
summation ovek. The overflow problem hampers Fang and Shriner’'s program in going t
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large j-values. Lai and Chiu’s program switches to decimal approximations whe30.

Lai and Chiu’s program is written in quadruple-precision and demands significantly mol
computing time than lower precision arithmetic. Although Lai and Chiu’s program work
well for fairly large j-values, similar to other existing programs, it also loses accuracy
when computing the sum ovkr Because Lai and Chiu’s and Fang and Shriner’s programs
are designed to calculate the 3jm symbol separately and do not make use of relationst
between the values of contiguous coefficients, they are too time-consuming for the extens
use in multiparticle-scattering calculations where numerous sets of the coupling coefficiel
need to be determined at the same time. Nevertheless, these programs can be used in m
tests for our new recursion scheme.

B. Recursive Evaluation

There exists an algorithm for the evaluation of Wigner 3jm symbols based on the exe
solution of recurrence relations. Schulton and Gordon [18, 19] provided the three-tel
recurrence relation,

P j1 o J2 jat+1 - j1 2 I3
13C(js+ 1) <m1 M, Ma ) + D(ja) (ml Mo ma)

. . j ' js—1
+<13+1)C(13>(r‘nll .k ):0, (©)

where

C(ja) = {[(ja)* — (j1 — il (j1 + J2 + D* — (j2)%][(ja)? — (Mg)?]}/2,
(7)
D(j3s) = —Qjs+ D[j1(j1 + Dmz — j2(j2 + 1)mz — jz(jz + D(my — my)].

This recurrence relation follows directly from the eigenvalue problems that define tf
coupling coefficients. It is also solved in a way similar to the integration of bound stat
Schidinger equations. The linear three-term recurrence relation Eq. (6) reduces to t
terms at the boundarigs,, = |j1 — j2| or|my + my|andjz . = j1 + j2,

(jl j2 j1+j2—1)= D(j1+ j2) (]1 j2 jl+j2>
m m ms (i+ 2+DC(j1+j2) \m my mg '

8

( jl j2 j3min + 1) — D(jgmi”) ( jl j2 j3min>
m.omy  m (Jamn)C(jame +1) \M1 Mz Mg /-
Hence, the recurrence process can start with a single starting value in either forward

backward recursion. For an integer combination jaf j,, my, my), the total number of
3jm symbols is determined by

Ny = ji+ jo+1—max(]ji — jol, [IMmy + my|). 9

1. Calculation of starting values. For backward recursion (i.e., the recursion wjth

decreasing), the starting value(i§ 2 1 *%2 ) For this particular 3jm symbol, since

Kmin = Kmax =0 (10)
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by Egs. (2) and (3), Eq. (1) becomes

IERE Jit 2 = (_1)]1+j2+m1+mz
m my —mM;—mp

1/2

[ CiD'CiD'j1+ j2 — mp — m)!(j1 + j2 + My + my)!
x (11)

Cj1+ 22+ D!(jr —m)!(ja + m)!(j2 — m)!(j2 + myp)!

For forward recursion (withjs increasing), the starting value(g: 22 _J ). There are
in total four possibilities for the value g _ :

J3mn = J1 = J2ls (12)
or
J3mn = M1+ my|. (13)

Similar to Eq. (11), the analytical expressions {gf 22 _J~ ) corresponding to these
four cases are, respectively,

( jl j2 jl - j2 ) — (_1)j1+m1

my my —mg—mp

x{ (j1 —m)!(j1 +mp)!(2j1 — 2j2)!(2j)! T/z a
(2 —m)(j2 + m)!(j1 — jo — My —m)!(j1 — jo + My + m)!(2j1 + D! )
jl j2 j2 B jl = (_1)J2+m2
rnl m2 —ml — m2
x{ (2 — M) (j2 + M) (2j2 — 2j)1(2]1)! }1/2 as)
Gr—mD G+ M) (o — jo—mi — M) (o — 1+ M + M) 2 + D! |
jioj2 m+m o
(mll mz2 _r;l_ niz) = (—1lam
x (1 4+ M)! (2 + M) (1 + o — My — my)!(2my + 2my)! " (16)
(J1 = M)! (2 = M)!(j = J2 + My + M) (2 — jo + My + M) (2 + 2 + My + M + 1!

( jrode M- m2> = (=1)htm
m my, —mp—m;

(17)

. . . . 1/2
« (= m)!(Ja — m)!(j1 + J2 + My + M)l (=2my — 2Zmy)!
(ja+m) (o +m)!(jo = jo — My — M)V (jo — o — My — M)l (jy + jo — My — my + D! ’

Al Egs. (11) and (14-17) imply a single valuelofin other words, accurate starting values
can be obtained directly using Eqg. (1) because these particular cases do not have the prol
of losing accuracy in the summation over
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2. Stability and efficiency of the forward and backward recursioi®e use the unitary
property of the Wigner 3jm symbol

oL o B\
j;}(213+1)<m1 m m3) =1 (18)

to systematically check the accuracy of the numerical results from both forward and bac

ward recursion procedures, the method of direct calculation, and Lai and Chiu’s progra
The residual

j1t+i2 . . . 2
|1 : Ji )2 3
R=|1 | Ej (2]3+1)<m1 My m3> (19)
3= I3min

is the direct measure of the accuracy. In this accuracy test, all our calculations are in quac
ple precision, the same as in Lai and Chiu’s program. Table 1 shows the accuracy-test res
for the four schemes: backward recursion (BR), forward recursion (FR), the method of ¢
rect calculation (DC), and Lai and Chiu’s program (Lai90). From Table 1 we see that tt
method of direct calculation using Eq. (1) and Lai and Chiu’s program start to lose accura
at aroundj ~ 20 and that neither backward nor forward recursion is satisfactorily accu
rate, although the backward recursion seems to be more stable. As pointed out by Schu
and Gordon [19], both backward and forward recursion procedures are stable only in

TABLE 1
Computational Accuracy of Four Methods for the Calculation of Wigner 3jm Symbols
Using Quadruple-Precision Arithmetic

Largest residuaRa;’

Jma Nb BRY FR DC' Lai9r?

10 128,843 0.338994E-32 0.377964E-32 0.114352E-32 0.722224E-3¢
20 3,267,285 0.670027E-32 0.772177E-32 0.394575E-31 0.883360E-3:
30 22,903,327 0.116300E-31 0.171656E-31 0.403632E-29 0.363135E-2¢
40 92,684,969 0.126091E-31 0.213693E-22 0.318329E-27 0.283796E-2
50 276,020,211 0.165525E-31 0.171587E-10 0.276811E-25 —

60 675,677,053 0.190997E-31 — — —

70 1,443,383,495 0.716262E-28 — — —

80 2,789,427,537 0.331044E-22 — —

2 The largest value of; and j, reached in the test calculationgex = jimax = J2max- 1Hhe Same applies to Tables

2,4,and 7.

b The total number of all possible groups @f, j., m;, m,) when j, and j, reachjm.. The same applies to
Tables 2, 4, and 7.

¢ The residuaR, defined by Eq. (19), is the direct measure of the numerical accuracy of calculated Wigner 3;i
symbols. The same applies to Table 4.

4 Backward recursion, i.e., the recursion in the direction jittecreasing.

¢ Forward recursion, i.e., the recursion in the direction witincreasing.

f The method of direct calculation using Eg. (1). The same applies to Tables 2, 4, and 7.
9 Lai and Chiu’s computer code [16].
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direction of increasing coupling coefficients. For laijgealues, the 3jm symbols drop ex-
ponentially at both end regions of the recursion domain (so-called nonclassical domaii
towards the boundaries. These two nonclassical domains are separated by an interme
region (so-called classical domain), where the values of the 3jm symbols oscillate rapid
Schulton and Gordon'’s recursion scheme [19] proceeds simultaneously forward and ba
ward from the two nonclassical domains towards an intermediate coefficient that lies in t
classical domain of larger coupling coefficients. In their program, starting values for bo
recursion directions are arbitrary. Their scheme requires, therefore, finding an appropri
intermediate value of; at which both recursion series meet and using the appropriat
numerical factors to rescale recursion series in the determination of the actual numeri
values of 3jm symbols.

Table 2 lists the CPU times required by the four different schemes. Table 2 shows that
method of direct calculation and, especially, Lai and Chiu’s program are much more CF
time-demanding than the recursion procedures. This is not surprising because the met
of direct calculation and Lai and Chiu’s program calculate the 3jm symbol individually.

3. Apractically useful recursion schemeAs indicated in Table 1, our test calculations
show that the backward recursion is more accurate than the forward recursion, althot
no one alone works satisfactorily well. For the backward recursion, problems occur at t
end region ofjz_,,, where the forward recursion is stable. We propose a recursion scher
that is: (i) using the analytical expressions Egs. (11) and (14-17) to directly calculate tv
starting values ajs ., and js_., (ii) using the two-term relations Egs. (8) to calculate the
next coefficient at both ends, (iii) using Schulton and Gordon’s recurrence relation Eq. (6)
generate the backward recursion series, and (iv) calculating in the forward direction for or
the 3jm symbols that monotonically increase and replacing those in the backward seri
Unlike Schulton and Gordon’s program, this scheme does not use arbitrary starting vall
and does not require the determination of an intermediate valjasf well as rescaling
factors.

4. Calculation of factorials. We need to address here the problem of the calculation o
factorials. Although using Egs. (11) and (14-17) to determine starting values does not he

TABLE 2
CPU Time Required by the Same Four Schemes as in Table 1 in Quadruple-Precision
Calculations of Wigner 3jm Symbols

CPU (s) on DEC ALphaStation 600 5/333

Jmax N BR FR DC Lai90

10 128,843 4.91 4.75 11.34 120.91
20 3,267,285 127.20 122.68 585.54 8,340.21
30 22,903,327 906.01 874.30 6,929.53 104,549.61
40 92,684,969 3,678.46 3,546.22 42,576.03 631,109.01
50 276,020,211 11,014.74 10,623.30 178,450.70 —

60 675,677,053 26,961.18 — — —

70 1,443,383,495 57,676.91 — — —

80 2,789,427,537 111,891.44 — — —

2 See the footnotes of Table 1 for the meaning of headings.
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the problem of losing accuracy in the summation dvgthese equations involve the cal-
culation of a quite large number of factorials. Quadruple-precision calculations can hanc
very large numbers. But itis much more time-consuming than lower precision. Usually, w
use double-precision arithmetic, where 171! overflows floating point representation. Tt
will occur ataround; = j, = 42in Eq. (11). To avoid the overflow problem, logarithms of
factorials can be used in decimal calculations. There is a very neat approximation deriv
by Lanczos [26] specifically to the gamma function:

z+1/2

72 =21 <z+ Y+ 5) e @2 A (2), (20)

where
1 Z 2(z—-1)

y (@ 2'00+plz+1erZ(z+1)(z+2)Jr (21)

with
k
pe =Y CHF(a),
a=0
(22)

F(a):?(a—%)!(ot—i—y-i-}

—a—1/2
ea+)/+l/2’
2)

andC2¥s are the coefficients of the Chebyshev polynomial. The logarithm of a factorial ca
be calculated from the equation

In(2m) 1 1 1
In(z!) = >~ <z+y+2) + (z+2> In (z+y+2>

C1 Co CN
In , 23
+ <c0+z+1+z+2+ Jrz+N+E) (23)

wheree is the truncation error. There is a published subroutine using Lanczos’ approxim
tion method in the book “Numerical Recipes” [27], which uges 5 andN = 6 that result

in le] < 2 x 10719, To apply Lanczos’ approximation in double-precision calculations, we
usey = 10 andN = 11, and consequentli| < 1.4 x 1077, The corresponding values
of c's are given in Table 3.

C. Accuracy and Timing Tests

Based on Schulton and Gordon’s recurrence relation, we have devised a recursive
proach to computing Wigner 3jm symbols. In our practical programming, we use doub
precision. Our systematic accuracy test indicates that this recursion scheme (REC-W) wa
well from low to very highj-values, while the method of direct calculation using Eqg. (1)
(DC) and the forward recursion (FR) work well only fpr~ 10 or smaller and are unable
to provide accurate results even at quite modest valugsoth as ~ 20, not to mention
larger j-values. The backward recursion (BR) works reasonably well ynti 20~30.
Similar to Table 1, Table 4 shows the largest residiRas, (see Eq. (19) for the definition
of R) occurred in the double-precision calculations of Wigner 3jm symbols using the fol
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TABLE 3
c-Coefficients in Lanczos’ Approximation (Eg. (23)) wheny = 10 andN =11

Co 0.10000000000000000d1 1 C 0.16427423239836267d5
C —0.48589401600331902d5 3C 0.55557391003815523d5
Ca —0.30964901015912058d5 5C 0.87287202992571788d4
Cs —0.11714474574532352d4 7C 0.63103078123601037d2
Cs —0.93060589791758878d0 9 C 0.13919002438227877d-2
Cio —0.45006835613027859d-8 11C 0.13069587914063262d-9

different schemes: our recursion scheme (REC-W), the method of direct calculation (D(
the forward recursion (FR), and the backward recursion (BR). As examples for practic
computations, Tables 5 and 6 provide the numerical values of all Wigner 3jm symba
with (jq1, j2, mg, mp) = (98, 115 —69, —100) and (260, 280, 228 268 calculated by the
recursion scheme REC-W. Table 7 is the timing-test results, which show that our recurs
approach is much more efficient, especially at lajrg@lues. The computing time required
by our recursion scheme is only a few percentages of that of the method of direct calculati

Ill. RECURSIVE EVALUATION OF GAUNT COEFFICIENTS

As defined by Eg. (4), the Gaunt coefficient can be expressed using the definite integt
of the product of three associated Legendre functions. Alternatively, Gaunt coefficients c
be also defined by the equation [22]

Qmax

PROOP(X) = agPriy 5 (X), (24)
gq=0

TABLE 4
Numerical Accuracy of the Wigner 3jm Symbols Computed by the Recursion Scheme Pro-
posed in the Present Paper (REC-W), the Backward (BR) and Forward (FR) Recursions, and
the Method of Direct Calculation (DC) Using Double-Precision Arithmetic

Largest residuaR
Jmax N REC-W BR FR DC
10 128,843 0.1650E-12 0.2391E-12 0.3192E-12 0.1539E-12
20 3,267,285 0.4125E-12 0.4441E-12 0.1095E-06 0.6831E-11
30 22,903,327 0.4125E-12 0.4730E-12 — 0.8050E-09
40 92,684,969 0.4784E-12 0.3717E-10 — 0.7658E-07
50 276,020,211 0.6483E-12 0.2538E-04 — 0.8140E-05
60 675,677,053 0.7675E-12 — — 0.6197E-03
70 1,443,383,495 0.9029E-12 — — —
80 2,789,427,537 0.1103E-11 — — —
90 4,992,257,179 0.1247E-11 — — —
100 8,408,080,421 0.1381E-11 — —

2 See the footnotes of Table 1 for the meaning of headings.
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TABLE 5
Wigner 3jm Symbols (°% 1> J2 ) Calculated by the Recursion Scheme (REC-W) Proposed
in the Present Paper

IE (fsg }1150 1ng) Is fgg }11[?0 1139)
213 0.247807608975E-02 190 —0.766670865870E-02
212 0.693884894548E-02 189 0.183623427214E-02
211 0.119894874087E-01 188 0.885978296144E-02
210 0.137159251054E-01 187 0.360339675896E-02
209 0.878978201272E-02 186 —0.675539815610E-02
208 —0.134879420191E-02 185 —0.775155593324E-02
207 —0.970595957126E-02 184 0.217581459579E-02
206 —0.914594140187E-02 183 0.920466519730E-02
205 0.198440813258E-04 182 0.332904024036E-02
204 0.878311425522E-02 181 —0.741474620815E-02
203 0.793425707299E-02 180 —0.792886358693E-02
202 —0.164593319164E-02 179 0.278789882553E-02
201 —0.910034650419E-02 178 0.995072010456E-02
200 —0.569261339324E-02 177 0.338584101796E-02
199 0.451366658452E-02 176 —0.824790063946E-02
198 0.900428915783E-02 175 —0.908913611839E-02
197 0.213839293164E-02 174 0.249530288372E-02
196 —0.738662641847E-02 173 0.116922354185E-01
195 —0.727334991775E-02 172 0.649086743310E-02
194 0.238138717955E-02 171 —0.766439796219E-02
193 0.884240026286E-02 170 —0.158289171853E-01
192 0.343404012778E-02 169 —0.115821629971E-01
191 —0.662762854015E-02 R=0.19706459E-13

whereay is an abbreviated notation of the Gaunt coeffica(mh, n, «, v, n + v — 2q) and

. n —|m

Omax = mln(n, v, M) (25)

There are two ways to calculate the Gaunt coefficient. With Wigner 3jm symbols accurate

calculated using the recursion scheme developed in the last section, Gaunt coefficients

be evaluated by Eq. (5) formulated by Cruzan. Gaunt coefficients can also be recursiv
calculated in terms of their general recurrence relations [23].

A. General Recurrence Relations

Gaunt coefficients can be solved in a lower triangular linear system [22]:

_ . (P+1/2)q 2“: (M — Nax(k — V)2g-2
(—Na)zq £ K@ = 0N =N+ 1/2)(~v + 1/2)q«
gq-1

—p—a+j+1/2)q ]
—Z( P ?_J.|/)“Jaj. (26)
e a— !
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TABLE 6
) Calculated by the Recursion Scheme (REC-W) Proposed in
the Present Paper

260280 |3
228 268 —496

Wigner 3jm Symbols (

] G ) G
540 0.646538800496E-03 517 —0.547290382597E-02
539 —0.215500549372E-02 516 0.174964877782E-02
538 0.465411076035E-02 515 0.394504283491E-02
537 —0.731061039588E-02 514 —0.527216572521E-02
536 0.838427599069E-02 513 0.724931930634E-03
535 —0.626797503117E-02 512 0.468182444016E-02
534 0.111598158779E-02 511 —0.496946357969E-02
533 0.440871782946E-02 510 —0.217788430018E-03
532 —0.656221561371E-02 509 0.526678411373E-02
531 0.357812146408E-02 508 —0.473156768970E-02
530 0.224745743079E-02 507 —0.865329202847E-03
529 —0.592844996838E-02 506 0.572304021206E-02
528 0.410199707330E-02 505 —0.488192167706E-02
527 0.156337294749E-02 504 —0.859257546078E-03
526 —0.558989788105E-02 503 0.604575462241E-02
525 0.395146634823E-02 502 —0.598098779693E-02
524 0.170679604185E-02 501 0.773481764641E-03
523 —0.551972978223E-02 500 0.547061798683E-02
522 0.345323154487E-02 499 —0.866216228838E-02
521 0.230286994591E-02 498 0.777640385675E-02
520 —0.553203800308E-02 497 —0.465713579139E-02
519 0.269624934600E-02 496 0.173119327070E-02
518 0.310961234591E-02 R=0.10780049E-12

From this linearization algorithm, we obtained an analytical expression for any individu
Gaunt coefficient,

_ 2p+lz“:(p+q—i +3/2)q1i-1

2 @=D'ng =21 + Dy

i=0

(M —N)2j (U — v)ai—
=N 7 27
JZ=;)]!(I_J)!(_n+1/2)j(—v+l/2)i_]- (27)
whereq =1,2,...,0max, Na =N+v —m— u, and
p=n+v-—2q. 28)

Based on this algorithm, we have also derived the general recurrence formulas for Ga
coefficients [23], which are shown in the Appendix. Another and easier way to derive tt
recurrence relations is to use Eqs. (5) and (6). Denote that

n v p
(m 1 —m—u)’ (29)

o_ (N v P
WP‘(O 0 o)’ (30)

Wp
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TABLE 7
CPU Time Required by Two Schemes REC-W and DC in
Double-Precision Calculations of Wigner 3jm Symbols

CPU (s) on DEC AlphaStation

600 5/333

max N REC-W DC
10 128,843 0.87 5.54
20 3,267,285 14.57 197.22
30 22,903,327 83.30 1,785.18
40 92,684,969 295.84 8,868.34
50 276,020,211 808.66 31,285.43
60 675,677,053 1,861.11 88,516.61
70 1,443,383,495 3,794.23 —
80 2,789,427,537 7,065.23 —
90 4,992,257,179 12,270.59 —

100 8,408,080,421 20,159.84 —

Bp = {[P* — (n—)[(n+v + 1)? — p?]}/?,
Ep=[(p—m—w(p+m+ ]2
Ap=p(p—D(M—p)— M+ pw)(n—-v)(n+v+1).

With the use of these notations, Egs. (5) and (6) become, respectively,

(—D)™U2p + DEp [(N+m)! (v + )l Y2
(p+m+w)! n—m!@ — !

(P +2)Bpr1épr1tWp = 2p + ) Api2Wpi1 — (P + D Bpr2&pr2Wpia.

ap =a(m,n, u, v, p) = WOW,,

Equation (35) is equivalent to

CoWp = CoWp,2 + C4Wp 4,

where

Co = (P+2(p+ 3)Bp+1Bp26p+1pt22P + 7) Apya,

Co=(2p+3)(2p+5)2p+ N Ap12Api3Ap 14
—(P+1(P+3)Br 255122+ D Apia
—(P+2)(P+4)B,35532P + 3 Az,

Cs = —(p+2(P+ 3)Bp+3Bpt+abpr3&pra(2p + 3) Apio.

For the special case 8%), A, = 0, £, = p, and then

Bo+2,,,0
W2 = —=PEwWe
p ,Berl p+
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(31)
(32)
(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)
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Equations (34)—(40) result in the recurrence relation

b1
@2p+D2p+3)

(P+2(P+3)(Pr+ (P +2) Apiaap

= —api2 | Ap+2Ap+3Apia

- (p+ 1>(p+3>(p1+2><pz+2>(2p+3§’(+22p+5) Apia
- (p+2)(p+4)(p1+3>(p2+3>(2p+f;§(+§’p+7)Ap+z
~ (P+2(P+3)(P2+3)(P2+4) (2p+7;2’(+;p+9) Api2dpia.  (41)
where
pL=p-M—u, pP2=p+m+pu (42)
Now, we define thak, = #3/(1 — 4p?), i.e.,
ap = [p* — (N —v)’[p* — (N +v + D?/(4p* - D). (43)

Then, we can rewrite Eq. (41) in the form

(P+2(P+3)(P1+ 1)(P1+ 2api1Aptadp
= [Ap+2Ap+3Apta + (P + D(P+ 3 (P1 + 2 (P2 + 2api2Apra
+(P+2(p+AH(p1+ 33 (P2 + daprzApi2apz
—(P+2(p+ 3 (p2+ 3) (P2 + DatpraApio8pia, (44)

whichis exactly the same as Eqgs. (A1) with (A2) in Appendix. From this three-term relatior
a four-term recurrence relation without the facfyy, 4 can be derived (see Egs. (A5) and
(A6) in Appendix), which applies to the case®f4 = 0, where the three-term recurrence
relation Eq. (44) is not applicable.

The recursion scheme for Gaunt coefficients based on their recurrence relations requ
only a single starting value for both forward and backward recursions, because all recurre
formulas reduce to two-term relations at both ends. Necessary equations for the calcula
of starting values are also given in Appendix. Similar to the case of the recursive evalt
tion of Wigner 3jm symbols, neither forward nor backward recursion alone is satisfactoril
accurate although, again, the backward recurrence is more stable. A practically applica
recursion scheme for Gaunt coefficients must also combine forward and backward rec
rence procedures, like the one for Wigner 3jm symbols. In practical programming, we fir
generate the recursion series witincreasing and then calculate in the opposite direction
with g decreasing until a coefficient is reached for which the numerical values obtained |
both recursions are in satisfactory agreement.
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B. Numerical Test

We calculated all possible Gaunt coefficients umitax = vmax = 120 using both the
recursion scheme (REC-G) discussed above and the 3jm approach using Cruzan’s forn
Eq. (5) with Wigner 3jm symbols computed by the recursive scheme (REC-W) developed
the last section. The numerical results from these two schemes are in excellent agreem
Both methods generally have more than 11 digits agreeable. This means that the rela
deviation is usually less than 1¥. For illustration, the numerical values of the Gaunt
coefficients with(m, n, i, v) = (—15,55, —58, 72) and (100, 112 99, 143 obtained by
both methods are given in Table 8. Larger relative deviations occur at some particular cas
Table 9 shows some practical examples of such cases where a smaller coefficient is inlai
much larger neighboring coefficients. Table 10 lists the largest relative deviations among
Gaunt coefficients with < Nmaxandv < vmax (Nmax= vmax) for different values oh(v)max.
These relative deviations are the indication of the best accuracy that can be achieve
double-precision calculation of the Gaunt coefficient. If more accurate numerical values ¢
needed, it probably needs to go to higher precision arithmetic, yet considerable comput
time will be required.

As stated in [23], several other tests can be used to check the stability of the recursi
scheme:

(i) Whenp = —mandv = n, the last Gaunt coefficier,,, is explicitly given by

D"
n+1

a(m,n, —m, n, 0) = (45)

(i) From Eq. (24) it is obvious that whem = —m, gm:a a(m,n,—m,v,n+v —2Qq)
= &mo, Whered g is the Kidnecker delta symbol.
(iif) From Eq. (24) itis also obvious that wher+- m andu + v are both odd,

Omax —20—m—
—1)(+v=2q9-m—p)/2 — 2 ]
Z (-1 (N+v—20+m+p) _o. (46)

2 Al(na — 29)/2[(n+ v — 29 + M+ ) /2]

.., Y am ag P oq(0) = 0, and whem + m andy + v are both even,

qzm:ax (—=D)MHv=2-M=0/2(n oy — 20+ m+ p)!

prs 2ntv=2[(ng — 29)/2]'[(n+v — 29 + m+ ) /2]!

B (=DOH=M=0/2(n + M)l (v + )
- 2vtvemee(n—m) /21 [(n+m) /2 [ v — w) /2 + 1) /2]

(47)

e, Y amsag P oq(0) = PM(0)PL(0).

(iv) In general, the numerical values of all Gaunt coefficients in the set o
a(m, n, u, v, p) for an integer grougm, n, i, v) must satisfy Eq. (24) for any value of
x (0 < |x] < 1). All our test calculations using above criteria are satisfactory and show the
the recursion scheme for the Gaunt coefficient is satisfactorily stable [23].
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TABLE 8
The Gaunt Coefficientsa(—15, 55,—58, 72,p) and a(100, 112, 99, 143)) Calculated by Both
Cruzan’s 3jm Formula Eq. (5) and the Recursion Scheme (REC-G) Using Double-Precision
Arithmetic

q p a(—15,55, -58,72, p) p a(100, 112 99, 143 p)

0 127 0.2646565853203E+18 255 0.9014801412620E-64

1 125 —0.9020609422680E+18 253 —0.4454291036755E-62

2 123 0.1261206946319E+19 251 0.8111679090489E-61
3 121 —0.9081541876029E+18 249 —0.4865717151971E-60

4 119 0.3328773378798E+18 247 —0.2865747624629E-59

5 117 —0.3999023716726E+17 245 0.2872507671244E-58
6 115 —0.9370424600630E+16 243 0.2910460460651E-57
7 113 0.1937954274150E+16 241 —0.1000363901943E-56

8 111 0.4151474435389E+15 239 —0.3299666103578E-55

9 109 —0.4503345686430E+14 237 —0.1346893095521E-54
10 107 —0.1873104702543E+14 235 0.2734024566471E-53
11 105 —0.6892824708879E+12 233 0.4243593635563E-52
12 103 0.4706522197096E+12 231 0.1415220328564E-52
13 101 0.8362386532752E+11 229 —0.6940324016290E-50
14 99 0.3331711456707E+09 227 —0.7931615430226E-49
15 97 —0.1793741596315E+10 225 0.6094455105485E-48
16 95 —0.2623374312346E+09 223 0.2730320093940E-46
17 93 —0.5949690414500E+07 221 0.1403572183265E-45
18 91 0.3036193424123E+07 219 —0.8069100849572E-44
19 89 0.4523897047862E+06 217 —0.1467294635946E-42
20 87 0.2132756927936E+05 215 0.2945238881000E-41
21 85 —0.1468293231304E+04 213 0.1164727483072E-39
22 83 —0.2692135114944E+03 211 —0.2533890338350E-38
23 81 —0.1397178728905E+02 209 —0.1158929585758E-36
24 79 0.9600863474247E-02 207 0.7915615134293E-35
25 77 0.2934252243338E-01 205 —0.2548737638735E-33
26 75 0.8107892805619E-03 203 0.5844941612434E-32
27 73 —0.5910928044174E-05 201 —0.1070823713196E-30
28 199 0.1654077641495E-29
C. Timing Test

Table 11 compares the computing times required by the recursive (REC-G) and the G
approaches. It shows that the recursion scheme is around five times faster.

IV. CALCULATION OF VECTOR TRANSLATION COEFFICIENTS

Suppose that an electromagnetic field is represented by an infinite series in terms
vector spherical wave functions in an origitiél coordinate system. Its alternative multipole
expansion in a displacefth coordinate system is connected with the original expansior
in thelth coordinate system by vector translational addition theorems. Introduced by tl
addition theorems are a large number of vector translation Coeffiwﬂq{g and B,'me,
wherem, n, i, v are integersand > 0, v > 0, |m| < n, || < v. Based on the techniques
developed in the last two sections, this section discusses the calculation of these ve

translation coefficients.
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TABLE 9
Numerical Examples Showing a Certain Degree of Discrepancy between the Gaunt Coef-
ficients Calculated by Cruzan’s 3jm Formulation and the Recursion Scheme (REC-G) Using
Double-Precision Arithmetic?

a(m,n, u, v, p)

q p 3jm REC-G
m=7 33 20 —0.200951835283E-04 —0.200951835283E-04
n=42 34 18 —0.468041626714E-05 —0.468041626714E-05
uw=-15 35 16 0.575358B49FE-12 0.5753587671%-12
v =44 36 14 0.550968182890E-06 0.550968182890E-06
37 12 0.256949806872E-06 0.256949806872E-06
=6 34 44 0.182562971139E+00 0.182562971137E+00
n =50 35 42 0.191236492753E+00 0.191236492748E+00
w= 36 40 —0.51368D0224&-05 —0.5136885833(-05
v =62 37 38 —0.918115021080E+00 —0.918115021097E+00
38 36 —0.420617949011E+01 —0.420617949015E+01
m =20 38 74 0.113220844079E+02 0.113220844079E+02
n =66 39 72 0.481866384456E+02 0.481866384457E+02
n =236 40 70 0.6294485695%-03 0.62943919494£-03
v=284 41 68 —0.449898083589E+04 —0.449898083588E+04
42 66 —0.981044427713E+05 —0.981044427713E+05
m=24 66 89 —0.998195574121E+04 —0.998195574089E+04
n =105 67 87 —0.225862452960E+05 —0.225862452946E+05
nw=31 68 85 0.3899863082E+01 0.3899930069°E+01
v =116 69 83 0.529145427253E+06 0.529145427285E+06
70 81 0.550520830612E+07 0.550520830628E+07

2 The highlights (bold style) indicate the discrepancies on the numerical values of the Gaunt coefficients obtair
by Cruzan’s 3jm formulation and Xu’s recursive scheme presented in this paper. Note that the highlighted Gal
coefficients are a few magnitude smaller than the neighboring coefficients.

TABLE 10
The Largest Relative Deviationénax between the Numerical Values of Gaunt Coefficients
a(m, n, u, v, p) Calculated by Cruzan’s 3jm Formulation and Xu’'s Recurrence Scheme
(REC-G) Using Double-Precision Arithmetic

N(V)max Smax m n % v N(V) max Smax m n % v
10 2.472E-13 -1 9 -1 9 70 1.667E-06 6 50 8 62
20 9.607E-12 -3 10 -5 16 80 1.667E-06 6 50 8 62
30 1.360E-10 -3 12 -6 23 90 1.688E-06 20 66 36 84
40 1.375E-09 4 30 6 40 100 1.688E-06 20 66 36 84
50 2.297E-08 7 42 —15 44 110 1.688E-06 20 66 36 84
60 2.297E-08 7 42 -15 44 120 1.718E-06 24 105 31 116

2 The numbers in the four columns unaern, ., andv show the integer group @fm, n, w, v) at which the
largest relative deviation occurs. The same applies to Table 13.
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TABLE 11
CPU Time Required by Cruzan’s 3jm Formulation and the Recursion

Scheme (REC-G) for the Calculation of Gaunt Coefficients Using Double-
Precision Arithmetic

CPU (s) on DEC AlphaStation

600 5/333
N(V)max N? REC-G 3jm
20 915,166 4.36 17.32
40 24,593,932 77.88 351.39
60 175,876,298 453.03 2,217.19
80 718,962,264 1,627.10 8,410.96
100 2,254,211,830 4,450.56 24,010.40

@ The total number of all possible Gaunt coefficients whemdv reachn(v)max.

A. Formulas of Stein’s Type

Stein’s formulas relate the vector translation coeﬁicimw and B,'%W with seven
scalar translation coefficients [1]:

‘ ‘ n—mcl (h+m+1Cl .
AII = E v CI] k i C039 il T
My mng < mn + d] j [ n2n — 1) 2n+3)(n+ 1)

kd, Poin1 Cotni1

ka; . m-In—lpv m—1n+1uv i

+— sm@.,{{n(Zn_l) (2n+3)(n+1)]exp( 1é1j)
(n—m-21(n— m)CH:]+1n—ly_v

N { n@2zn — 1)

lj
_(n+m+ 2)(n+m-+ 1)Cm+1n+1;w] expi ¢”)}>,

48
@n+3n+ 1) (48)

i ikdl' Emn v i i .

'lTIme = m {2mCIIT]1n;w COS@'] - [Cg—ln—luv EX[X—I ¢|j)
+(M+m+DhH(n- m)CHan—lW expli¢ij)] sind; }, (49)
where [6]

Emn :-v—n(2v+1)(n+m)!(\}—,bb)!. (50)

@n+2H)(n—m)lwv+ w)!

In Egs. (48) and (49 is the wave number ardi;, 6, ¢j) are the spherical coordinates of

the origin of thej th coordinate system in théh coordinate system. Mackowski's equations
are [13]

A|] _ Emn;w

lj
mnuy T 2n(n + 1) [(n - m)(n +m+ 1)Cm+1nu+1v

+2umGl, + 0+ WO =+ DCh 101 (51)
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Blj [ (Zn + 1) Emn;w

’
" = “anmr -5 0T Do i

+2u(N—mMCPy 1 — O+ 00—+ DCY 01 1], (52)
or alternatively,

i _ i@+ DEmy,
MY 2n(n + 1)(2n + 3)

[+ m+ DO +M+2)Ch 101

20+ M+DCY 1 — O+ W0 =+ DC 1] (63)

The scalar translation coefficient is given by [9]

i . . h (kdj)
Clnner = (=D™@n + 1" Paq[,p ’]
" (oien+ I jp(kdj)

a=0

T (S R

Wherehg) represents the Hankel function of the first kind gpds the Bessel function

of the first kind. Evaluation of the scalar translation coefficient using Eq. (54) require
the determination of a complete set of the Gaunt coeffi@émt, n, ., v, p). With Gaunt
coefficients calculated using the numerical techniques developed in the last section,
evaluation of scalar translation coefficients and, therefore, the vector translation coefficie
becomes an easy task through the use of Egs. (48)—(49), (51)—(52), or (53). There is ¢
an other way to calculate the scalar translation coefficient using Mackowski’s recurren
relations [13]:

1j lj 1j 1j
Cmn;w—l + Cmn;w+1 _ Cm—ln—ly—lu Cm—1n+l;1—lu (55)

2v+1 T 2n-1 n+3

V+ww+u+ 1)C:ijlw,1 +OV - —pn+ 1)C:Tj1n;w+l

2v+1
_(n— m;:]n_—lm -1 LI (n+m +2i) J(rn3+ m+ 3) Ciiniapsa  (56)
v+ M)C¥WLU_1 —(v—u+ 1)Clrjmuu+1
2v+1
= _;n—_r:C:ij_lw %anuw (57)

The procedure of calculating the scalar translation coefficient by Egs. (55)—(57) has be
discussed in detail in [14].
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B. Cruzan’s 3jm Formulation

Cruzan’s analytical expressions Wf%nw and BHWU can be written in the following
revised form [7, 14]:

— (—pm v+ DH(n—m! — w!

lj .
AZmu = 2 E DMl 5 1 P+ me]

qmax

x> iPIN0+1) + v +1) = p(p+ D]ag
q=0

[

jp(kdj)

mer Qv+ =Ml — w)!

2n(n+H(n+m)lw + w)!

} PY ™ (cost) (r = > , (58)

I’>d|j

B e = (—1) expli (1 +m)¢j]
Qmax

x Y IPPHI(P+ D% = (=) +v + D)2 — (p+ 122
q=1

h(&il(kdj)} putm

' r<dj
jp+1(kdj) p+1 (COSBIJ) <I’ - dlj > > (59)

x b(m,n, w,v, p+1, p) [
wherep, gmax, andag = a(m, n, u, v, p) are the same as defined by Egs. (28), (25), and
(5), respectively, and

Qmax = min[n, v, (N +v +1—|m+ ul)/2], (60)

M+m!+mw(p—m—pu+ 11742

(n—m!v — I (p+m+ u+ 1)
n v p+1 n v p
X(m " —m—u> (o 0 o)' (61)

Egs. (58)—(61) are not Cruzan’s original formulas in [2]. These equations specify explicit
the exact summation range owgfequivalently, the range gb) and include the factor of
Emne defined by Eq. (50). In Egs. (58) and (59) fall ., andB{j ... p has exactly the
same definition and takes the same set of numerical values. It is worth emphasizing h
that, despite these minor revisions, the set of equations given above has no difference fi
Cruzan'’s original work.

Evaluating vector translation coefficients by Cruzan’s 3jm formulation Egs. (58) and (5¢

needs two complete sets of Wigner 3jm symh@§ 5) and(, . _mp_u), the calculation of
which has been discussed in detail in Section II.

b(m,n, w,v, p+1, p) = (-1D"*"M2p+3) [

C. Xu's Formulas

Vector translation coefficients can also be expressed in terms of the Gaunt coefficient
derived in [14]. The formulas given in [14] involve three sets of Gaunt coefficients. It ca
be further simplified to the form that requires only a single set of Gaunt coefficients in boi
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equations forAll ,, andBy} ., ,

(n +2)n1(v + 2)p 1N+ v —m— p)!

N+ 0+ Doy + M+t LT mai]

Aljmn/w - (_ )

Omax

x Y iP[n(n+ 1) + v+ 1) — p(p+ 1]
q=0

L

jp(kd))

N+ 2Dn-1(v + 21N +v —m—w)!

+m , r<dj
] PF‘)‘ (costj) <r =y ) (62)

lj — (_1\m )
B—mn;w = (-1 NN+ v + Dnpo(M+ MW + )] expli (u + m)¢|l]
Qmax (1)
. (kdj) r<dj
p+1 p+1 u+m ) =4
x ; i Pip, { o k) } P/ (cost)) (r - d ) : (63)
where
2
bg = : [(P+2)(Pp1+ Dapr1dg — (P+D)(p2 + Dapi28q-1], Apr2# 0, (64)
p+2
b — 2p+3
T (P3Pt 2)Aps
X{[Ap+3Apia+ (P+2(P+ 4 (p1+ 3 (P2 + Dapya] dg-1
—(P+2(p+3)(p2+ 3 (P2 + Daprady_2}, Api2=0; (65)

8y stands for the normalized Gaunt coefficient defineddy- a,/a0, Ap, P1, P2, @p, and
Qmax have been defined by Egs. (33), (42), (43), and (60) respectively. \When =
Apra = 0, i.e., A, vanishes independently of the valuemfB 'mn,w = 0. This includes
the cases: (iu = m = 0 and (i)« = mandn = v. In addition, there are other special

cases WherBr'JWv = 0, which include (im = nandu = —v, and (i)m = —nandu = v.
Also, in the following cases the expression bgris rather simple:
() a=1,
(2p+3)Ap;3
- . 66
T (P3Pt ©9
(i) 9= 0maxandn+v — 2qmax= [N — v|, |M— p|,
2Cp+3)Api1.
S o M e : 67
Omax p( P2 + 1) anax ( )
(i) = 0Omax+1,N+v—20max= M- ul+1,andAp,2 # O,
2p+3)(p+1 + 2api2 .
b1 = _(2p+3)(p+ D(p2 + Dapi2 . (68)

Aoz

Both Eqgs. (62) and (63) involve the same set of Gaunt coefficients. Equation (62) w
be exactly the same as Cruzan’s formula Eq. (58) if the normalized Gaunt coeféigient
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is replaced by the normal Gaunt coefficiegt Equation (63) is equivalent to Cruzan’'s
formula Eq. (59), since it can be directly derived from Eq. (59) through the use of Eq. (6

D. Numerical Results

We calculated all possible vector translation coefficienbsmv and BLLW (kd; = 2.0
andgj = ¢p; = 0.5) from Nmin = Vmin = 1 UP tONmax = Vmax = 45 using four different
schemes. All of our test calculations ulsgﬁ, the Hankel function, in the equations for
the vector translation coefficients. The first scheme (referred to as SX) uses Stein’s forn
las and the recursive approach (REC-G) developed in Section Ill to computing the Gat
coefficients. The second (CX) employs Cruzan’s formulas. Wigner 3jm symbols are calc
lated by the recursive scheme (REC-W) developed in Section Il. The third (MM) utilize
Mackowski’s formulas, together with Mackowski's recursion scheme for the calculation c
scalar translation coefficients. The fourth (XU) is based on Xu'’s formulas and the recursi
approach (REC-G) to calculating Gaunt coefficients. In general, these four schemes
duce same numerical results (but maybe with different accuracies). Table 12 provides sc
sample numerical values wq{;nw and BLLW for which all four schemes obtain identical
results for all the digits shown. But the numerical results from the four approaches are r
always precisely the same. In some cases, larger relative deviation shows up. The lar

TABLE 12
Sample Numerical Values of Vector Translation CoefficientsAl , and B} with (kd;,

0, ¢y) = (2, 0.5, 0.5) for Which All Four Schemes (SX, CX, MM, XU) Obtain More Than 12
Digits Exactly the Same Using Double-Precision Arithmetic

Ij 1j
Arnmv an;w

m n u v Real Imag. Real Imag.

8 10 -9 12 .3663964990E+35-.2762412192E+35 —.8370892023E+32—-.1110285257E+32

0 10 0 10 .2969682019E+00-.1928601440E+18 .0000000000E+00  .0000000000E+00
-2 1 3 9 .7726121583E+12  .1034255820E+13 .1222239141E+19130398908E+10
—12 13 10 15 .3290937356E+01 .1456483748E-01-.1763167849E-03 .3983892680E-01
—-15 16 17 18 .3793897303E-08-.1261972860E-07 —.3042702016E-11 —.9147343290E-12

-5 20 5 20 .4040625669E+34-.1195269260E+34 .0000000000E+00  .0000000000E+00
10 18 15 22 —.6206840651E+36—.8308775621E+36 —.3610252125E+35 .2696938836E+35
10 30 —10 30 .1807705110+110  .2788115866+110 .0000000000E+00  .0000000000E+(
18 33 20 38 .3343492687E+92  .5207181338E+92 .1759309957E+9129639932E+91
-35 36 11 12 —.1901528547E-15 .1197320691E-15—-.1618572254E-18 —.2570540515E-18

36 36 —38 38 .4146334728+191-.4931584782+191 .0000000000E+00  .0000000000E+00
—35 40 35 40 —.6514262216E-05 .1374854333E-04 .0000000000E+00  .0000000000E+0
32 35 —43 45 .2762232925+212—.1368895313+213 .8373862584+209  .1689724460+209
38 42 -39 45 —.2298689786+235  .2371029493+235 .1277697908+232  .1238711556+23.
—42 42 45 45  .3488835702E-28-.1826524477E-28 .0000000000E+00  .0000000000E+00
—43 45 41 42  .5178100899E-22 .1186503822E-21 .3274958627E-25429246656E-25

48 50 —30 49 .3393827523+267—.1226717423+268 —.5718637033+265—.1582113973+265
72 72 1 3 .6946365327E-42—.1782022552E-41 .1833377882E-43 .7146549596E-44
42 52 9 81 .3656934399+271  .3705813223+27%1.4499925012+269 —.4440572037+269

18 100 -5 45 .4118769973+293  .7460688240+293 .5914795871+293265339985+291
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TABLE 13
The Largest Relative Deviationénax Of the Numerical Values of Vector Translation Coeffi-
cientsAl , andBl  with (kd;, 6, #;) = (2,0.5,0.5) Obtained by Two Schemes CX and XU
Using Double-Precision Arithmetic

N(V)max Smax m n 123 v N(V)max Smax m n 123 v
5 2.283E-13 0 3 1 5 30 1.331E-10 —9 20 -21 30
10 2.412E-12 -3 6 4 8 35 1.331E-10 -9 20 -21 30
15 2.412E-12 -3 6 4 8 40 1.331E-10 -9 20 -21 30
20 5.135E-12 -1 18 -1 18 45 1.331E-10 -9 20 -21 30
25 5.686E-11 -21 22 -14 22

relative deviations of the numerical values obtained by CX and XU schemes are sho
in Table 13 for different values ai(v)max. The values oim, n, i, v), where the largest

relative deviations occur, are also given. The test results tell us that ﬁ@{mjL and B:ijw
we calculated, CX and XU schemes are satisfactorily accurate. The results also tell us t
the algorithm of Stein’s type is less accurate in some circumstances, although the numer
results given by all four schemes are usually in good agreement. Some examples are sh

in Table 14.

TABLE 14
Numerical Examples of Vector Translation CoefficientsA'rjnnW and B'r"nn/w Showing
the Formulation of Stein’s Type Is Less Accurate
Amnuu anuv
kd=2.0
6 =¢ =0.5rad Real Imag. Real Imag.
m=-2 SX .141555329E-01 .2385575934E+13 —.3282035237E+12  .1519277&-02
n==6 CX .1377011649E-01 .2385575934E+13-.3282035237E+12 .1587043209E-02
pw=-2 MM .1377011649E-01 .2385575934E+13—-.3282035237E+12 .1587043209E-02
v=10 XU .1377011649E-01 .2385575934E+13-.3282035237E+12 .1587043209E-02
m=-15 SX .4484065576-01 —.2653706899E+36 —.5072175010E+35 .6893509830E+19
n=16 CX .2074318970E-01 —.2653706899E+36 —.5072175010E+35  .9852438545E-02
u=-15 MM .2074318970E-01 —.2653706899E+36 —.5072175010E+35  .9852438545E-02
v=20 XU .2074318970E-01 —.2653706899E+36 —.5072175010E+35  .9852438545E-02
m=-20 SX .1171318929+100 —.4993981811+115 —.2073152255+114 .3718472789E+98
n=35 CX .1851837652E-05 —.4993981811+115 —.2073152255+114 .4193366215E-07
nw=-20 MM  .1851837652E-05 —.4993981811+115 —.2073152255+114  .4193366215E-07
v=45 XU .1851837652E-05 —.4993981811+115 —.2073152255+114 .4193366215E-07
m=41 SX .5274527123+243  .6806046183+243—.1036557371+246 .8033077975+245
n=45 CX .2276246420+247  .2937180509+247—.8692874643+243 .6736775193+243
w=—42 MM —.5984438460+241 —.7722088366+241 .7496750010+238-.5809806487+238
v=45 XU .2276246420+247  .2937180509+247—.8692874643+243 .6736775193+243
m=45 SX —.3850764003+250  .2984252330+250 .8048935394+247 .10386035512+248
n=57 CX —.4293609827+274  .3327447520+274—.4939385256+271 —.6373592055+271
n=-38 MM —.2482905385+243  .1924193790+243 .1512629781+246 .1951839076+246
v=42 XU —.4293609827+274  .3327447520+274—.4939385256+271 —.6373592055+271
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TABLE 15
CPU Time Required by SX, CX, MM, XU Schemes in Double-Precision
Calculations of Vector Translation CoefficientsAmn,.., and B,

CPU (s) on DEC AlphaStation 600 5/333

N N@ sX MM o XU

10 14,400 9.46 4.11 3.30 1.85
15 65,025 57.34 30.30 19.48 11.43
20 193,600 217.13 131.57 72.85 44.43
25 455,625 632.71 422.81 208.52 131.78
30 921,600 1,551.08 1,119.16 503.19 327.12
35 1,677,025 3,354.16 2,559.29 1,073.56 715.46
40 2,822,400 6,603.60 5290.66  2,083.63 1,421.09
45 4,473,225  12,101.05  10,059.45  3,770.67 2,621.65

2 The total number of vector translation coefficients wiid; , 6;, ¢;) specified when
n andv reachn(v)max.

It is noticed that the values 04\'4]%” and BHWV dramatically increase with andv
increasing. When the values nfandv are larger than 45, the values of certd&hw

or B,'ijw overflow double-precision float point representation. For the calculation of th
vector translation coefficients withandv larger than 45, higher precision arithmetic may

be needed although it will demand significantly more computing time.

E. Timing Test

Table 15 shows the timing-test results. Among the four schemes to calculate vec
translation coefficients, SX, CX, MM, and XU, the schemes using the formulas of Stein
type (SX and MM) are slower than the others. The 3jm-approach (CX) and the approa
(XU) using the Gaunt coefficient is comparable, but the latter is a bit more efficient.

V. EXAMPLES FOR PRACTICAL APPLICATION IN MULTISPHERE
LIGHT-SCATTERING CALCULATIONS

We have implemented the algorithms described in this paper, together with our mul
sphere light-scattering formulation, in a working computer code. Comparison of the theor
ical results from our multisphere-scattering calculations with experimental data for variol
aggregates of spheres are successful [7, 14, 24]. For illustration, Figs. 1 and 2 show f
practical examples. In 1983, Wang and Gustafson [28] published the microwave-scatter
measurement results of phase functions and the degree of polarization for 12 sets
dumbbells and linear chains, each consisting of 2, 3, or 5 identical spheres in varic
intersphere separations. In addition to the measurements for some principal fixed orier
tions, their data include the measurements of phase function at random-orientation aver
by taking the arithmetic mean of 35 orientations uniformly distributed over an octant
space. Figure 1 refers to a bisphere system (target ID#542000 in Ref. [28]). The two ide
tical spheres in #542000 with a complex refractive inddx63 — 0.01i are in contact. The
size parameter, i.e., the circumference to wavelength ratio, of each sphere is 4.346.
two spheres in the bisphere system (target ID#542002 in Ref. [28]) shown in Fig. 2 are t
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542000 542000
T T I T T l T T 4 T T | T T ’ T T
4 — see exp. ese exp.
— theory | — theory

Log(izz)

Log(iyy)

0 60 120 180 0 60 120 180
Scattering Angle (degrees)

FIG. 1. Angular distribution of polarization components of scattered intensity by randomly oriented twc
contacting identical spheres of refractive inde&3t-i10.01 and size parameter 4.346 (ID#542000 in Ref. [28]).
andi,, correspond to the scattered-field components, perpendicular and parallel to the scattering plane, respecti
The laboratory microwave scattering data are measured by Wang and Gustafson [28].

same as in #542000. The difference between the bisphere systems #542000 and #54:
is only that the two spheres in the latter are not in contact, which have a center-to-cen
separatiors with ks = 9.94. The microwave-scattering measurements shown in Figs. 1 an
2 are random-orientation average of the phase functigrendi,, of the targets #542000
and #542002, respectivelyt; andio; are the scattered-field components, perpendiculat
and parallel to the scattering plane, respectively. Figures 1 and 2 show that our theoret
calculations are in good agreement with experimental data.

VI. CLOSING REMARKS

We have shown that all Stein’s, Cruzan’s, Mackowski’s, and Xu’s formulas produc
generally the same numerical results for vector translation coefficients. But the numeri
accuracies of the four different schemes are not always competitive in some cases, espec
for the calculation of high-degree coefficients. The two schemes based on the Wigner 3
symbol and the Gaunt coefficient are satisfactorily accurate and more efficient than the ot

two.

542002 542002
T T | T T | T T 4 T T | T T | T T
41— eee exp. —| eee exp.
— theory | — theory T
~—~ ~~
= 2 8
s =
S’ S’
af af
Q 0 Q
— e
L R 0 l— ]
—2 - —
PR R N S R T R SR R
0 60 120 180 0 60 120 180

Scattering Angle (degrees)

FIG. 2. Same as in Fig. 1, but for the randomly oriented sphere system #542002 [28] of two separat:
identical spheres.
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Our thorough numerical test concludes that, from the point of view of numerical result
Cruzan’s formulas are equivalent to the formulas of others, including Stein’s and Xu’s. Th
clears up the long-existing ambiguity in the analytical representation of vector translatic
coefficients and rules out the criticism on Cruzan’s equation.

The recursive approach presented in this paper to calculating Wigner 3jm symbols
implemented in decimal approximations. But in principle, Schulten and Gordon’s recursi
relation can also apply to the exact calculation of the Wigner coefficients, which mg
be more efficient than the existing computer codes. Also, with a slight modification, th
recursive approach can also be applied to the calculation of Clebsch—Gordan coefficier

APPENDIX: RECURRENCE RELATIONS OF GAUNT COEFFICIENTS

Gaunt coefficientsag =a(m, n, u, v, n + v — 2q), whereq is an integer and) =
0,1,..., gmaxWith gmax = min[n, v, (n+ v — [m+ w|)/2], have the following three-term
recurrence relation [23],

Codq = C18q-1 + Co8q-2. (A1)

where

Co=(P+2(p+3)(pr+ D(P1+ 2 Apraapia,
C1 = Ap+2Ap+3Apra + (P + D(P+ ) (P1 + 2) (P2 + 2) Aptacpi2
+(P+2)(p+4)(pr+ (P2 + 3)Ap20pys, (A2)
C2=—(P+2)(p+3)(pz2+ (P2 + 4 Apt2apia,
with p, Ap, p1, p2, andep defined by Egs. (28), (33), (42), and (43), respectively. When

w = mandyv = n, A, vanishes independently gfso that the three-term relation Eq. (A1)
reduces to two-terms:

(P+2)(pr+ Daprrag = (P + D (P2 + 2pi28g-1. (A3)
Especially, whenw = m = 0, the above two-term relation further reduces to
Op418g = Upi28g—1. (A4)
WhenAp;4 = 0 but Apie # 0, the four-term recurrence formula,
Codgq = C13g—1 + Cpag—2 + C3ag—3, (A5)
can be used, where

Co=(P+2(P+3I)(P+5(PL+ D(p1+ 2)(P1+ 4) Aprepii,

Ct = (P+5(P1+DApis[Api2Apiz + (P + D(P+ 3 (Pr+ 2 (P2 + Dopsa),
Co = (P+2(P2+3Api2[ApisApie + (P + D(P+ 6)(Pr+ 5 (P2 + Horpys),
C3=—(P+2)(P+D(P+ P2+ (P2 + (P2 + 6) Api2api6.

(AB)
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For both backward and forward recursions, the implementation of either the three-term
the four-term recurrence relation, (A1) or (A5), requires only one single starting value. |
the backward recursion, i.e., the recurrence directigmaécreasingd increasing), for the
second Gaunt coefficient the three-term relation (A1) reduces to two terms; = c;ao.

It is similar for forward recursion. Also, the four-term recurrence relation (A5) reduces t
two terms at boundaries fex or ag,,,1 and to three terms for the third coefficieast or
ag,.—2. Thisis just because all Gaunt coefficients out of range §.e.,0 orq > gmay area

null set. The first Gaunt coefficient in the backward recurrence directionpyith= n+v

is given by [20—-22]

n+DLnwv+DH, (N+v—m-—p)!

=amn,u,v,Nn+v) = .
% =am.n, x )= v+ Do (=m0 — o)

(A7)

In the forward recurrence direction withincreasing, the starting value ptin = n+v —
24, C@N be computed by one of the following equations:

(i) Pmin=n—v,
=D*(w + DN+ M (2pmin + 1!
= ; A8
B (N + Dnpa(v — )N — ) (Pmin + M+ p)! (A8)
(i) Pmn=v—n,
8, = D™+ Dn(v + M)!(2pr-'nin + D! : (A9)
W+ Dy —m!w — m!(Pmin + M+ w)!
(iii))  Pmin = M+ pu,
Ao = (—1)Mm=Amax(2 Pmin + 1) (Gmax + 1 gra
y (N+ v — gma! (N + M)! (v + u)! . (A10)
(N = Gma)! (v = Gmax)! (N = M)! (v — ! (N + v + Pin + D!’
(V) Pmin=—M—p,
aqmax = (_l)v+ﬂiqmax(2 Pmin + 1) (Qmax + ]-)qmax
% (N + v — Omax)! (Pmin — M — w)! : (A11)
(N — gmax)! (v — Gmax) ' (N + v + Pmin + D)!
_ (_1)n+m_qmaXApmin (2 Pmin + 1) (Qmax + :I-)qmaX
e (Pmin — DM+ v + Pmin + D!

"N = Gmand! (v — Gmad (N — M) (v — o)l
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In this case, wher,,, = 0, a4, = 0, the next coefficient must be provided, which is

(_1)m+n7qmaXApmin+2(2 Pmin + 3)(2 Pmin + 5) (Qmax + 1)qmax+l
Prmin(N 4+ v + Pmin + 3 (N + v + Pmin)!

% (N — Omax) (v — Omax) (20max+ 1)
(Pmin + M+ &+ D (Pmin + M+ 1t + 2)(20max— 1)

(N+v = gma! (N + M + w)!

anax—l =

X , (A13)
(N = Omax+ D'V — Gmax + D0 — m)! (v — w)!
whereA,, . +2 is always nonzero wheA, ,, = 0.
(Vi) Pmin=-m—pu+1,
aq _ (_1)v+uiqmaxApmin (2pmin + 1)(qmax+ :l-)qmaX
e (Pmin — DN+ v + Pmin + D!
_ | P — |
% (N + v — Omax)! (Pmin — M IL)-‘ (AL4)
(N — Omax)!' (v — Omax)!
WhenA,,, =0,
L= (_1)V+M_qmaxApmin+2(2pmin + 3)(2pmin + 5) (Qmax + l)qmax+1
e 6Pmin(N 4+ v + Pmin + 3)(N 4+ v + Prin)!
y (n—CImax)(‘f'—CImax)(n‘i‘V—Qmax)!(pmin—m—l/«)!. (A15)

(2qmax_ D — Omax+ D!V — Omax + D!
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